Marine Biology

, Volume 93, Issue 4, pp 581–590 | Cite as

Microzooplankton grazing and selectivity of phytoplankton in coastal waters

  • P. H. Burkill
  • R. F. C. Mantoura
  • C. A. Llewellyn
  • N. J. P. Owens


Microzooplankton grazing activity in the Celtic Sea and Carmarthen Bay in summer 1983 and autumn 1984 was investigated by applying a dilution technique to high-performance liquid chromatographic (HPLC) analysis of photosynthetic pigments in phytoplankton present within natural microplankton communities. Specific grazing rates on phytoplankton, as measured by the utilisation of chlorophyll a, were high and varied seasonally. In surface waters during the autumn, grazing varied between 0.4 d-1 in the bay and 1.0 d-1 in the Celtic Sea, indicating that 30 and 65% of the algal standing stocks, respectively, were grazed daily. Grazing rates by microzooplankton within the thermocline in summer suggest that 13 to 42% of the crop was grazed each day. Microzooplankton showed selection for algae containing chlorophyll b, in spite of a predominance of chlorophyll c within the phytoplankton community. Changes in taxon-specific carotenoids indicated strong selection for peridinin, lutein and alloxanthin and selection against fucoxanthin and diadinoxanthin. This indicates a trophic preference by microzooplankton for dinoflagellates, cryptophytes, chlorophytes and prasinophytes and selection against diatoms, even when the latter group forms the largest crop within the phytoplankton. Interestingly, those algal taxa preferentially grazed also showed the highest specific growth-rates, suggesting a dynamic feed-back between microzooplankton and phytoplankton. Conversion of grazing rates on each pigment into chlorophyll a equivalents suggests firstly, that in only one experiment could all the grazed chlorophyll a be accounted for by the attrition of other chlorophylls and carotenoids, and secondly that in spite of negative selection, a greater mass of diatoms could be grazed by microzooplankton than any other algal taxon. The former may be due either to a fundamental difference in the break-down rates of chlorophyll a compared to other pigments, or to cyanobacteria forming a significant food source for microzooplankton. In either case, chlorophyll a is considered to be a good measure of grazing activity by microzooplankton.


Phytoplankton Carotenoid Fucoxanthin Grazing Rate Peridinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bartram, W. C.: Experimental development of a model for the feeding of neritic copepods on phytoplankton. J. Plankton Res. 3, 25–51 (1980)Google Scholar
  2. Beers, J. R. and G. L. Stewart: Microzooplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep-Sea Res. 18, 861–883 (1971)Google Scholar
  3. Blackbourn, D. J.: The feeding biology of tintinnid Protozoa and some other inshore microzooplankton, 224 pp. PhD thesis, University of British Columbia, Vancouver, B.C. 1974Google Scholar
  4. Burkill, P. H.: Ciliates and other microplankton components of a nearshore foodweb: standing stocks and production processes. Annls Inst. océanogr., Paris (N.S.) 58, 335–350 (1982)Google Scholar
  5. Burkill, P. H., N. J. P. Owens and R. F. C. Mantoura: Planktonic nitrogen cycling in coastal waters (Abstract). In: Nitrogen as an ecological factor, p. 442. Ed. by J. A. Lee, S. McNeill and I. H. Rorison. Oxford: Blackwell Scientific Publications 1983Google Scholar
  6. Capriulo, G. M.: Feeding of field collected tintinnid micro-zooplankton on natural food. Mar. Biol. 71, 73–86 (1982)Google Scholar
  7. Capriulo, G. M. and E. J. Carpenter: Grazing by 35 to 202 μm micro-zooplankton in Long Island Sound. Mar. Biol. 56, 319–326 (1980)Google Scholar
  8. Conover, R. J.: Feeding interactions in the pelagic zone. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 173, 66–76 (1978)Google Scholar
  9. Currie, R. I.: Pigments in zooplankton faeces. Nature, Lond. 193, 956–957 (1962)Google Scholar
  10. Foss, P., R. R. L. Guillard and S. Liaaen-Jensen: Prasinoxanthin, a chemosystematic marker for algae. Phytochem. 23, 1629–1633 (1984)Google Scholar
  11. Gifford, D. J.: Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar. Ecol. Prog. Ser. 23, 257–267 (1985)Google Scholar
  12. Hager, A. und H. Stransky: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. III. Grünalgen. Arch. Mikrobiol. 72, 68–83 (1970a)Google Scholar
  13. Hager, A. und H. Stransky: Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. V. Einzelne Vertreter der Cryptophycaea, Euglenophycaea, Bacillariophycaea, Chrysophyceae, und Phaeophyceae. Arch. Mikrobiol. 73, 77–89 (1970b)Google Scholar
  14. Heinbokel, J. F.: Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47, 177–189 (1978a)Google Scholar
  15. Heinbokel, J. F.: Studies on the functional role of tintinnids in the Southern California Bight. II. Grazing rates of field populations. Mar. Biol. 47, 191–197 (1978b)Google Scholar
  16. Heinbokel, J. F. and J. R. Beers: Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52, 23–32 (1979)Google Scholar
  17. Hollander, M. and D. A. Wolfe: Non-parametric statistical methods. 503 pp. New York: John Wiley 1973Google Scholar
  18. Institute for Marine Environmental Research: Annual Report 1983, 91 pp. Plymouth: Institute for Marine Environmental Research 1984Google Scholar
  19. Jeffrey, S. W., M. Sielecki and F. T. Haxo: Chloroplast pigment patterns in dinoflagellates. J. Phycol. 11, 374–384 (1975)Google Scholar
  20. Jen, J. J. and G. Mackinney: On the photodecomposition of chlorophyll in vitro. II. Intermediate and breakdown products. Photochem. Photobiol. 11, 303–308 (1970)Google Scholar
  21. Johannes, R. E.: Phosphorus excretion as related to body size in marine animals: microzooplankton and nutrient regeneration. Science, N.Y. 146, 923–924 (1964)Google Scholar
  22. Johannes, R. E.: Influence of marine Protozoa on nutrient regeneration. Limnol. Oceanogr. 10, 434–442 (1965)Google Scholar
  23. Joint, I. R., N. J. P. Owens and A. J. Pomroy: The seasonal production of picoplankton and nanoplankton in the Celtic Sea. Mar. Ecol. Prog. Ser. 28, 251–258 (1986)Google Scholar
  24. Joint, I. R. and A. J. Pomroy: Production of picoplankton and small nanoplankton in the Celtic Sea. Mar. Biol. 77, 19–27 (1983)Google Scholar
  25. Joint, I. R. and R. Williams: Demands of the herbivore community on phytoplankton production in the Celtic Sea in August. Mar. Biol. 87, 297–306 (1985)Google Scholar
  26. Klein, B., W. Geiskes and G. Kraay: Digestion of chlorophylls and carotenoids by the marine protozoan Oxyrrhis marina studied by HPLC analysis of algal pigments. J. Plankton Res. 8, 827–836 (1986)Google Scholar
  27. Landry, M. R., L. W. Haas and V. L. Fagerness: Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 16, 127–133 (1984)Google Scholar
  28. Landry, M. R. and R. P. Hassett: Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67, 283–288 (1982)Google Scholar
  29. Liaaen-Jensen, S.: Algal carotenoids and chemosystematics. In: Marine natural products chemistry, pp 239–259. Ed. by D. J. Faulkner and W. H. Fennical. New York: Plenum Press 1977Google Scholar
  30. Lohmann, H.: Untersuchung zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wiss. Meeresunters. (Abt. Kiel) 10, 131–370 (1908)Google Scholar
  31. Mantoura, R. F. C. and C. A. Llewellyn: The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analyt. chim. Acta 151, 297–314 (1983)Google Scholar
  32. Mantoura, R. F. C. and C. A. Llewellyn: Trace enrichments of marine algal pigments for use with HPLC-diode array spectroscopy. J. High Resolution Chromatography Communs 7, 632–634 (1984)Google Scholar
  33. Mantoura, R. F. C., N. J. P. Owens and P. H. Burkill: Nitrogen biogeochemistry and modelling of Carmarthen Bay. In: SCOPE Symposium on Nitrogen Cycling in Coastal Marine Environments. Ed. by T. H. Blackburn and J. Sørensen. New York: Wiley (In press)Google Scholar
  34. Nival, P. and S. Nival: Particle retention efficiencies of an herbivorous copepod, Acartia clausi (adult and copepodite stages): effects on grazing. Limnol. Oceanogr. 21, 24–38 (1976)Google Scholar
  35. Owens, N. J. P., R. F. C. Mantoura, P. H. Burkill, R. J. M. Howland, A. J. Pomroy and E. M. S. Woodward: Nutrient cycling studies in Carmarthen Bay: phytoplankton production, nitrogen assimilation and regeneration. Mar. Biol. 93, 329–342 (1986)Google Scholar
  36. Parsons, T. R., M. Takahashi and B. Hargrave: Biological oceanographic processes, 3rd ed. 330 pp. Oxford: Pergamon Press 1984Google Scholar
  37. Rassoulzadegan, F.: Dimensions et taux d'ingestion des particules consommées par un tintinide: Favella ehrenbergii (Clap. et Lachm.) Jørg., Cilié pélagique. Annls Inst. océanogr., Paris (N.S.) 54, 17–24 (1978)Google Scholar
  38. Rassoulzadegan, F.: Dependence of grazing rate, gross growth efficiency and food size range on temperature in a pelagic oligotrichous ciliate Lohmanniella spiralis Leeg., fed on naturally occurring particulate matter. Annls Inst. océanogr., Paris (N.S.) 58, 177–184 (1982)Google Scholar
  39. Rassoulzadegan, F. and M. Etiènne: Grazing rate of the tintinnid Stenosemella ventricosa (Clap. and Lachm.) Jørg on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr. 26, 258–270 (1981)Google Scholar
  40. Riley, G. A.: Oceanography of Long Island Sound 1952–1954. IX. Production and utilisation of organic matter. Bull. Bingham oceanogr. Coll. 15, 324–341 (1956)Google Scholar
  41. Robins, D. B. and I. E. Bellan: A controlled-temperature plankton wheel. Mar. Biol. 92, 587–593 (1986)Google Scholar
  42. Scott, J. M.: Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. mar. biol. Ass. U.K. 60, 681–702 (1980)Google Scholar
  43. Shuman, F. R. and C. J. Lorenzen: Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20, 580–586 (1975)Google Scholar
  44. Simpson, J. H.: A boundary front in the summer regime of the Celtic Sea. Estuar. cstl mar. Sci. 4, 71–81 (1976)Google Scholar
  45. Smetacek, V.: The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1–11 (1981)Google Scholar
  46. Stoecker, D., R. R. L. Guillard and R. M. Kavee: Selective predation by Favella ehrenbergii (Tintinnida) on and among dinoflagellates. Biol. Bull. mar. biol. Lab., Woods Hole 160, 136–145 (1981)Google Scholar
  47. Vesk, M. and S. W. Jeffrey: The effect of blue-green light on photosynthetic pigments and chloroplast structure in unicellular marine algae from six classes. J. Phycol. 13, 280–288 (1977)Google Scholar
  48. Welschmeyer, N. A. and C. J. Lorenzen: Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30, 1–21 (1985)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. H. Burkill
    • 1
  • R. F. C. Mantoura
    • 1
  • C. A. Llewellyn
    • 1
  • N. J. P. Owens
    • 1
  1. 1.Institute for Marine Environmental ResearchNatural Environment Research CouncilPlymouthEngland

Personalised recommendations