Advertisement

Marine Biology

, Volume 92, Issue 1, pp 65–72 | Cite as

Ultrastructure of the gill of the hydrothermal-vent mytilid Bathymodiolus sp.

  • A. Fiala-Médioni
  • C. Métivier
  • A. Herry
  • M. Le Pennec
Article

Abstract

Specimens of Bathymodiolus sp. were collected at 2 620 m depth during the “Biocyarise” Cruise (12°58′80″N; 13°56′60″W) in March 1984, and samples of the gill were fixed for ultrastructural observations. The gill of this hydrothermal-vent mytilid constitutes the main organ in the nutritional processes. The lamellae display abundant ciliation, normally comprised of frontal cilia, compound latero-frontal cirri and lateral cilia. At the ventral margin of each demi-branch, a longitudinal, ciliated, feeding groove is present. the lamellae are composed of numerous homorhabdic filaments connected by tufts of cilia. Each filament is made of a thin wall overlying a central lumen containing amoebocytes. Ultrastructural observations revealed the filament wall to be composed of four types of cells: (1) The ciliated cells of the frontal, latero-frontal and lateral ciliation, characterized by an abundance of mitochondria. (2) Mucous cells present to some degree among the ciliated cells, but more abundant on the distal edge and containing dense droplets of mucus. (3) Cells colonized at their apical pole by numerous bacteria enclosed in membrane-delimited clear spaces and composing the major part of the filament wall. (4) Thin ciliated cells separating the bacterial cells and characterised by a dense fringe of microvilli at their apical pole. The lumen of the filament contains amoebocytes of different morphological aspects which seem to accumulate electron-dense granules, possibly related to detoxification processes.

Keywords

Ciliated Cell Mucous Cell Distal Edge Ventral Margin Detoxification Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Cavanaugh, C. M.: Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, Lond. 302, 58–61 (1983)Google Scholar
  2. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannash and J. B. Waterbury: Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213, 340–341 (1981)Google Scholar
  3. Comita, P. B., R. B. Gargosian and P. M. Williams: Suspended particulate organic material from hydrothermal vent waters at 21°N. Nature, Lond. 307, 450–453 (1984)Google Scholar
  4. Desbruyères, D., F. Gaill, L. Laubier, D. Prieur and G. H. Rau: Unusual nutrition of the “Pompeii worm” Alvinella pompejana (polychaetous annelid) from a hydrothermal vent environment: SEM, TEM, 13C and 15N evidence. Mar. Biol. 75, 201–205 (1983)Google Scholar
  5. Desbruyères, D. and L. Laubier: Primary consumers from hydrothermal vents animal communities. In: Hydrothermal processes at seafloor spreading centers, pp 711–734. Ed. by P. A. Rona, R. Bostrom, L. Laubier and K. L. Smith, Jr. New York: Plenum Press 1984Google Scholar
  6. Enright, J. J., W. A. Newman, R. P. Hessler and J. A. McGowan: Deep-ocean hydrothermal vent communities. Nature, Lond. 289, 219–221 (1981)Google Scholar
  7. Fiala-Médioni, A.: Mise en évidence par microscopie électronique à transmission de l'abondance de bactéries symbiotiques dans la branchie de mollusques bivalves de sources hydrothermales profondes. C.r. hebd. Séanc. Acad. Sci., Paris 298, 487–492 (1984)Google Scholar
  8. Fiala-Médioni, A., A. M. Alayse and G. Cahet: Evidence of in situ uptake and incorporation of bicarbonate and amino acids by the hydrothermal vent mussel. J. exp. mar. biol. Ecol. 96, 191–198 (1986)Google Scholar
  9. Fiala-Médioni, A. and C. Métivier: Ultrastructure of the gill of the hydrothermal vent bivalve Calyptogena magnifica, with a discussion of its nutrition. Mar. Biol. 90, 215–222 (1986)Google Scholar
  10. Felbeck, H., J. J. Childress and G. N. Somero: Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide rich habitats. Nature, Lond. 293, 291–293 (1981)Google Scholar
  11. Felbeck, H., G. Liebezeit, R. Dawson, and O. Giere: CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75, 187–191 (1983)Google Scholar
  12. Felbeck, H. and G. N. Somero: Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. Trends biochem. Sciences 7, 201–204 (1982)Google Scholar
  13. Hessler, R. R. and W. M. Smithey: The distribution and community structure of megafauna at the Galápagos Rift hydrothermal vents. In: Hydrothermal processes at seafloor spreading centers, pp 735–770. Ed. by P. A. Rona, K. Bostrom, L. Laubier and K. L. Smith, Jr.. New York: Plenum Press 1984Google Scholar
  14. Hily, A., M. Le Pennec et A. Fiala-Médioni: Anatomie et structure du tractus digestif d'un Mytilidae des sources hydrothermales profondes de la ride du Pacifique Oriental (In preparation)Google Scholar
  15. Jannash, H. W. and C. O. Wirsen: Chemosynthetic primary production at east-Pacific seafloor spreading center. BioSci. 29, 592–598 (1979)Google Scholar
  16. Karl, D., C. Wirsen and H. Jannasch: Deep-sea primary production at the Galápagos hydrothermal vents. Science, N.Y. 207, 1345–1347 (1980)Google Scholar
  17. Kenk, V. D. and B. R. Wilson: A new mussel (Bivalvia Mytilidae) from hydrothermal vent in the Galápagos rift zone. Malacologia 26, 253–271 (1985)Google Scholar
  18. Laubier, L. et D. Desbruyères: Les oasis du fond des océans. La Recherche, Paris 161, 1507–1517 (1984)Google Scholar
  19. Le Pennec, M. et A. Hily: Anatomie, structure et ultra structure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique Oriental. Oceanol. Acta 7, 517–523 (1984)Google Scholar
  20. Le Pennec, M. et D. Prieur: Observations sur la nutrition d'un Mytilidae d'un site hydrothermal actif de la dorsale du Pacifique Oriental. C.r. hebd. Séanc. Acad. Sci., Paris 298, 493–498 (1984)Google Scholar
  21. Lonsdale, P.: Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res. 24, 857–863 (1977)Google Scholar
  22. Rau, G. H. and J. I. Hedge: Carbon13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, N.Y. 203, 648–649 (1979)Google Scholar
  23. Rhoads, D. C., R. A. Lutz, E. P. Revalas and R. M. Cerrato: Growth of bivalves at deep-sea hydrothermal vents along the Galápagos rift. Science, N.Y. 214, 911–933 (1981)Google Scholar
  24. Ruby, E. G., C. O. Wirsen and H. W. Jannasch: Chemolithotrophic sulfur-oxidizing bacteria from the Galápagos rift hydrothermal vents. Appl. envirl Microbiol. 42, 317–324 (1981)Google Scholar
  25. Smith, K. L. Jr.: Deep sea hydrothermal vent mussels: nutrition state and distribution at the Galápagos Rift. Ecology 66, 1067–1080 (1985)Google Scholar
  26. Tuttle, J. H., C. O. Wirsen and H. W. Jannasch: Microbial activities in the emitted hydrothermal waters of the Galápagos rift vents. Mar. Biol. 73, 293–299 (1983)Google Scholar
  27. Williams, P. M., K. L. Smith, E. M. Druffel and T. W. Linick: Dietary carbon sources of mussels and tube worms from Galápagos hydrothermal vents determined from tissue C14 activity. Nature, Lond. 292, 448–449 (1981)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. Fiala-Médioni
    • 1
  • C. Métivier
    • 1
  • A. Herry
    • 2
  • M. Le Pennec
    • 2
  1. 1.Laboratoire AragoUniversité Paris VIBanyuls-sur-MerFrance
  2. 2.Laboratoire de ZoologieUniversité de Bretagne OccidentaleBrest-CédexFrance

Personalised recommendations