Marine Biology

, Volume 92, Issue 3, pp 339–347 | Cite as

An energy budget for Porites porites (Scleractinia)

  • P. J. Edmunds
  • P. Spencer Davies


An energy budget for Porites porites (Pallas) was determined for specimens from 10 m depth on the Fore Reef of Discovery Bay, Jamaica, between July 1984 and July 1985. Evidence for habitual zooplankton ingestion was not obtained, and P. porites appears to be largely autotrophic. Out of the daily photosynthetically fixed energy, 26% is used for animal respiration and growth, 22% for zooxanthellae respiration and growth, and <1% for colony reproduction as mature planulae; 45% remains unaccounted for. Colony respiration, net photosynthesis, colony skeleton and tissue growth, zooplankton ingestion, reproductive effort and energy content of tissues were measured. Energy loss as continuous mucus secretion was not detected, but may occur by an alternative route via mucus tunics, which occur periodically in situ and in the laboratory. The energy budget suggests that a considerable excess of photosynthetically fixed energy is produced on an ideal sunny day at 10 m depth. This surplus may be required for periodic rather than continuous energy demands, or may be essential to survive “less-than-ideal” days, when net photosynthetic input is reduced.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Birkeland, C.: An experimental method of studying corals during early stages of growth. Micronesica 12, 319–322 (1976)Google Scholar
  2. Chalker, B. E.: Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar. Biol. 63, 135–141 (1981)CrossRefGoogle Scholar
  3. Chalker, B. E., W. C. Dunlap and J. K. Oliver: Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J. exp. mar. Biol. Ecol. 73, 37–56 (1983)CrossRefGoogle Scholar
  4. Crossland, C. J. and D. J. Barnes: Gas-exchange studies with the staghorn coral Acropora acuminata and its zooxanthellae. Mar. Biol. 40, 185–194 (1977)CrossRefGoogle Scholar
  5. Crossland, C. J., D. J. Barnes and M. A. Borowitzka: Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar. Biol. 60, 81–90 (1980)CrossRefGoogle Scholar
  6. Davies, P. S.: Carbon budgets and vertical zonation of Atlantic reef corals. Proc. 3rd int. Symp. coral Reefs 1, 391–395 (1977). (Ed. by D. L. Taylor. Miami: School of Marine and Atmospheric Sciences, University of Miami)Google Scholar
  7. Davies, P. S.: Respiration in some Atlantic reef corals in relation to vertical distribution and growth form. Biol. Bull. mar. biol. Lab., Woods Hole 158, 187–194 (1980)CrossRefGoogle Scholar
  8. Davies, P. S.: The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2, 181–186 (1984)Google Scholar
  9. Ducklow, H. W. and R. Mitchell: Composition of mucus released by coral reef coelenterates. Limnol. Oceanogr. 24, 706–714 (1979)CrossRefGoogle Scholar
  10. Dustan, P.: Depth-dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar. Biol. 68, 253–264 (1982)CrossRefGoogle Scholar
  11. Elliot, J. M. and W. Davison: Energy equivalents of oxygen consumption in animal energetics. Oecologia (Berlin) 19, 195–201 (1975)CrossRefGoogle Scholar
  12. Forster, J. R. M. and P. A. Gabbott: The assimilation of nutrients from compound diets by the prawns Palaemon serratus and Pandalus platyceros. J. mar. biol. Ass. U.K. 51, 943–961 (1971)CrossRefGoogle Scholar
  13. Johannes, R. E.: Sources of nutritional energy for reef corals. Proc. 2nd. int. Symp. coral Reefs 1, 133–137 (1974). (Ed. by A. M. Cameron et al. Brisbane: Great Barrier Reef Committee)Google Scholar
  14. Johannes, R. E. and L. Tepley: Examination of feeding of the reef coral Porites lobata in situ using time lapse photography. Proc. 2nd int. Symp. coral Reefs 1, 127–132 (1974). (Ed. by A. M. Cameron et al. Brisbane: Great Barrier Reef Committee)Google Scholar
  15. Johannes, R. E. and W. J. Wiebe: Method for determination of coral tissue biomass and composition. Limnol. Oceanogr. 15, 822–824 (1970)CrossRefGoogle Scholar
  16. Jokiel, P. L., J. E. Maragos and L. Franzisket: Coral growth: buoyant weight technique. Monogr. oceanogr. Methodol. (UNESCO) 5, 529–541 (1978)Google Scholar
  17. Kojis, B. L. and N. J. Quinn: Reproductive strategies in four species of Porites (Scleractinia). Proc. 4th int. Symp. coral Reefs 2, 145–151 (1982). (Ed. by E. D. Gomez et al. Quezon City, Philippines: Marine Sciences Center, University of the Philippines)Google Scholar
  18. Lehninger, A. L.: Bioenergetics, 245 pp. Elmsford, N.Y.: Benjamin 1973Google Scholar
  19. Lewis, D. H. and D. C. Smith: The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatopic corals. I. Movement of photosynthetic products between the symbionts. Proc. R. Soc. (Ser. B) 178, 111–129 (1971)CrossRefGoogle Scholar
  20. Lewis, J. B.: The formation of mucus envelopes by hermatypic corals of the genus Porites. Caribb. J. Sci. 13, 207–209 (1973)Google Scholar
  21. Lewis, J. B. and W. S. Price: Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool., Lond. 176, 527–544 (1975)CrossRefGoogle Scholar
  22. Lowry, O. H., N. T. Rosenbrough, D. L. Farr and R. J. Randall: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 267–275 (1951)Google Scholar
  23. McCloskey, L. R. and L. Muscatine: Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth. Proc. R. Soc. (Ser. B) 222, 215–230 (1984)CrossRefGoogle Scholar
  24. McCloskey, L. R., D. S. Wethey and J. W. Porter: Measurement and interpretation of photosynthesis and respiration in reef corals. Monogr. oceanogr. Methodol. (UNESCO) 5, 379–396 (1978)Google Scholar
  25. Muscatine, L.: Nutrition of corals. In: The geology and biology of coral reefs, Vol. 2. pp 77–115. Ed. by O. A. Jones and R. Endean. New York: Academic Press 1973CrossRefGoogle Scholar
  26. Muscatine, L., P. G. Falkowski, J. W. Porter and Z. Dubinsky: Fate of photosynthetic fixed carbon in light and shadeadapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. (Ser. B) 222, 181–202 (1984)CrossRefGoogle Scholar
  27. Muscatine, L. and C. Hand: Direct evidence for the transfer of materials from symbiotic algae to the tissues of a coelenterate. Proc. natn. Acad. Sci. U.S.A. 44, 1259–1263 (1958)CrossRefGoogle Scholar
  28. Muscatine, L., L. R. McCloskey and R. E. Marian: Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981)CrossRefGoogle Scholar
  29. Muscatine, L. and J. W. Porter: Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioSci. 27, 454–460 (1977)CrossRefGoogle Scholar
  30. Patton, J. S., S. Abraham and A. A. Benson: Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven cycle between symbiont and host. Mar. Biol. 44, 235–247 (1977)CrossRefGoogle Scholar
  31. Patton, J. S. and J. E. Burris: Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar. Biol. 75, 131–136 (1983)CrossRefGoogle Scholar
  32. Porter, J. W.: Autotrophy, heterotrophy and resource partitioning in Caribbean reef-building corals. Am. Nat. 110, 731–742 (1976)CrossRefGoogle Scholar
  33. Porter, J. W.: Primary productivity in the sea: reef corals in situ. In: Primary productivity in the sea, pp 403–410. Ed. by P. G. Falkowski. New York: Plenum Publishing Corp. 1980CrossRefGoogle Scholar
  34. Porter, J. W.: The maritime weather of Jamaica: its effect on annual carbon budgets of the massive reef-building coral Montastrea annularis. Proc. 5th int. Symp. coral Reefs (1985). (Ed. by C. Gabric et al. Moorea, French Polynesia: Antenne Museum-EPHE)Google Scholar
  35. Porter, J. W., L. Muscatine, Z. Dubinsky and P. G. Falkowski: Primary productivity and photoadaptation in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. (Ser. B) 222, 161–180 (1984)CrossRefGoogle Scholar
  36. Richmond, R.: Energetic considerations in the dispersal of Pocillopora damicornis (Linnaeus) planulae. Proc. 4th int. Symp. coral Reefs 2, 153–156 (1982). (Ed. by E. D. Gomez et al. Quezon City, Philippines: Marine Sciences Center, University of the Philippines)Google Scholar
  37. Trench, R. K.: Nutritional potentials of Zoanthus sociatus. Helgoländer wiss. Meeresunters. 26, 174–216 (1974)CrossRefGoogle Scholar
  38. Tytler, E. M. and P. S. Davies: A method of isolating pure zooxanthellae by density gradient centrifugation. Limnol. Oceanogr. 28, 1266–1268 (1984)CrossRefGoogle Scholar
  39. Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17, 721–735 (1970)Google Scholar
  40. Wethey, D. A. and J. W. Porter: Habitat related patterns of productivity of the foliaceous reef coral Pavona praetorta (Dana). In: Coelenterate ecology and behaviour, pp 59–66. Ed. by G. O. Mackie. New York: Plenum Press 1976CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. J. Edmunds
    • 1
    • 2
  • P. Spencer Davies
    • 1
  1. 1.Department of ZoologyUniversity of GlasgowGlasgowScotland
  2. 2.Discovery Bay Marine LaboratoryDiscovery Bay, West IndiesJamaica

Personalised recommendations