Marine Biology

, Volume 98, Issue 1, pp 125–129 | Cite as

Geographical and temporal distribution of iodine-131 in the brown seaweed Fucus subsequent to the Chernobyl incident

  • L. D. Druehl
  • M. Cackette
  • J. M. D'Auria


Coastal distribution in the northern hemisphere 131I originating from Chernobyl was estimated using standard gamma spectrometric techniques on samples of the intertidal seaweed, Fucus. In May and June 1986 synchronized Fucus spp. collections were made from several locations around the world with emphasis on the northeast Pacific shores. The large-scale patterns of 131I specific activity was consistent with prevailing tropospheric wind conditions. In British Columbia and Washington State, specific activity correlated significantly and positively with precipitation. A detailed study of a Fucus population in Vancouver, British Columbia, suggested that plants became contaminated by rain-borne 131I during periods of emergence. This population had detectable levels of 131I for about 40 d, and a bio-elimination half-period of 10.3 d.


Precipitation Temporal Distribution Northern Hemisphere Detectable Level Wind Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Anderson, A. (1986). Making the most of Chernobyl. Nature, Lond. 322: 673Google Scholar
  2. Anonymous (1974). Climates and the states. Vol. 2, western states (including Alaska and Hawaii). Water Information Center Publ., National Oceanic and Atmospheric Adm., U.S. Dept. of CommerceGoogle Scholar
  3. Anonymous (1982). Canadian climate normal. Vol. 3, Precipitation, 1951–1980, Can. Clim. Progr.Google Scholar
  4. Anonymous (1986). Chernobyl fallout: corrigendum. Nature, Lond. 321: 643Google Scholar
  5. Butler, G. C. (1980). Radioactivity in the Canadian environment. NRC Canada, Publ. NRCC 18134Google Scholar
  6. Goldberg, E. D., Bowen, V. T., Farrington, J. W., Harvey, G., Martin, J. H., Parker, P. L., Roseborough, R. W., Robertson, W., Schneider, E., Gamble, E. (1978). The mussel watch. Environ Conserv. 5: 101–125Google Scholar
  7. Guimaraes, J. R. D., Penna-Franca, E. (1985). 137Cs, 60Co and 125I bioaccumulations by seaweeds from the Angra dos Reis nuclear plant region. Mar. Environ. Res. 16: 77–93Google Scholar
  8. Hevano, S., Islui, T., Nakamura, R., Matsuka, M., Koyanagi, T. (1983). Chemical forms of radioactive iodine in seawater and its effects upon marine organisms. Radioisotopes 33: 319–322Google Scholar
  9. Klemperer, H. G. (1957). The accumulation of iodide by Fucus ceranoides. Biochem. J. 67: 381–390Google Scholar
  10. Law, J. J. (1975). Instrumental neutron activations analysis for iodine in seaweeds. Texas J. Sci. 26: 93–98Google Scholar
  11. Lederer, C. M., Shirley, V. S. (1978). Table of isotopes. 7th edn John Wiley and Sons, New YorkGoogle Scholar
  12. Oort, A. H., Rasmussen, E. M. (1971). Atmospheric circulation statistics. NOAA professional paper No. 5, U.S. Dept. Commerce, RockvilleGoogle Scholar
  13. Popham, J. D., Johnson, D. C., D'Auria, J. M. (1980). Mussels (Mytilus edulis) as point source indicators of trace metal pollution. Mar. Pollut. Bull. 11: 261–263Google Scholar
  14. Riley, J. P. (1965). Analytical chemistry of sea water. In: Riley, J. P., Skirrow, G. (eds.) Chemical Oceanography. Vol. 2. Academic Press, London, p. 295–424Google Scholar
  15. Saenko, G. N., Krautsova, Y. Y., Ivanenko, V. V., Sheludko, S. I. (1978). Concentration of iodine and bromine by plants in the seas of Japan and Okhotsk. Mar. Biol. 47: 243–250Google Scholar
  16. Smith, F. B., Clark, M. J. (1986). Radionuclide depositions from the Chernobyl cloud. Nature Lond. 322: 690–691Google Scholar
  17. Tokala, K., Olkkoven, H. (1981). Lead content of an epiphytic lichen in the urban area of Kuopio, east central Finland. Ann. Bot. Fenn. 18: 85–89Google Scholar
  18. Tseng, C. K. (1981). Commercial cultivation. In: Lobban, C. S., Wynne, M. J. (eds.) The biology of seaweeds. Botan. Monogr. 17: 680–725Google Scholar
  19. Uematsu, M., Duce, R. A. (1986). Tracking the Chernobyl plume across the pacific. Maritimes 30: 1–4Google Scholar
  20. Woodwell, G. M. (1967). Toxic substances and ecological cycles. Sci. Am. 216: 24–31Google Scholar
  21. Young, G. E., Langelle, W. M. (1958). The occurrence of inorganic elements in marine algae of the Atlantic provinces of Canada. Can. J. Bot. 36: 301–310Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • L. D. Druehl
    • 1
  • M. Cackette
    • 2
  • J. M. D'Auria
    • 2
  1. 1.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  2. 2.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations