Marine Biology

, Volume 99, Issue 4, pp 507–513 | Cite as

The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)?

  • K. Johannesson


In benthic invertebrates dispersal of planktotrophic larvae is generally considered more effective than is, for example, the rafting of adults or egg masses. It is certainly true that over short distances, viz., in the range of tens of kilometres or less, a moderately long-lived planktotrophic larva represents an effective mechanism of dispersal. However, turbulent mixing and mortality will decrease the concentration of planktotrophic larvae, and at some distance from the ancestral population the density of settlers may be too low to enable future matings between adults of low mobility. On the other hand, adults, juveniles or benthic egg masses drifted over long distances may colonize new habitats. The crucial point is the type of larval development of the organism. If the founder group belongs to a species with direct development or which produces very short-lived planktonic larvae, the low mobility of all life-stages will maintain a population within a restricted area so that mates will be likely to encounter each other even in a small population. Even if transport of benthic stages happens very rarely, this may be more influential than larval dispersal over long distances. To show that this may be true the detailed geographical distribution of two intertidal gastropod species with contrasting modes of development is presented and further support from the literature for this hypothesis is discussed.


Direct Development Benthic Invertebrate Ancestral Population Larval Dispersal Dispersal Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abbott, R. T. (1972). American seashells. Van Nostrand Reinhold, New YorkGoogle Scholar
  2. Allen, J. A., Sheltema, R. S. (1972). The functional morphology and geographical distribution of Planktomya henseni, a supposed neotenus pelagic bivalve. J. mar. biol. Ass. U.K. 52: 19–31Google Scholar
  3. Arnaud, F., Arnaud, P. M., Intés, A., Le Loeuff, P. (1976). Transport d'invertebres benthique entre l'Afrique du Sud et Sainte Hélene par les laminaires (Phaeophyceae). Bull. Mus. Nat. d'hist. Nat. 384: 49–55Google Scholar
  4. Barsotti, G., Campani, E. (1982). Il promontorio di Castiglioncello (LI): III. Rinvenimento di una populazione di Littorina littorea (L.) — Moll. Gastropoda Prosobranchia. Quaderni Mus. St. Nat. Livorno 3: 65–71Google Scholar
  5. Bequaert, J. C. (1943). The genus Littorina in the western Atlantic. Johnsonia 7: 1–28Google Scholar
  6. Bird, J. B. (1968). Littorina littorea: Occurrence in a northern Newfoundland beach terrace, predating Norse settlements. Science, N.Y. 159: 114Google Scholar
  7. Birkeland, C. (1971). Biological observations on Cobb Seamount. North West Science, N.Y. 45: 193–199Google Scholar
  8. Boden, B. P. (1952). Natural conservation of insular plankton. Nature, Lond. 169: 697–699Google Scholar
  9. Burton, R. S. (1983). Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206Google Scholar
  10. Carefoot, T. (1977). Pacific seashores. Douglas & McIntyre, VancouverGoogle Scholar
  11. Carlquist, S. (1974). Island biology. Columbia University Press, New YorkGoogle Scholar
  12. Carlton, J. T. (1982). The historical biogeography of Littorina littorea on the Atlantic coast of North America, and implications for the interpretation of the structure of New England intertidal communities. Malacol. Rev. 15: 146Google Scholar
  13. Carlton, J. T. (1985). Transoceanic and interoceanic dispersal of coastal marine organisms: The biology of ballast water. Oceanogr. mar. Biol. A. Rev. 23: 313–371Google Scholar
  14. Chapman, A. R. O. (1986). Population and community ecology of seaweeds. In: Blaxter, J. H. S., Southward, A. J. (es.) Advances in marine biology. Vol. 23. Academic, London, p. 1–161Google Scholar
  15. Chia, F.-S. (1974). Classification and adaptive significance of developmental patterns in marine invertebrates. Thal. Jugosl. 10: 121–130Google Scholar
  16. Christiansen, F. B., Fenchel, T. (1979). Evolution of marine invertebrate reproductive patterns. Theor. Pop. Biol. 16: 267–282Google Scholar
  17. Clarke, A. H., Erskine, J. S. (1961). Pre-Columbian Littorina littorea in Nova Scotia. Science, N.Y. 134: 393–394Google Scholar
  18. Cohen, D. (1967). Optimization of seasonal migratory behavior. Am. Nat. 101: 5–17Google Scholar
  19. Crisp, D. J. (1958). The spread of Elminus modestus in North West Europe. J. mar. biol. Ass. U.K. 37: 483–520Google Scholar
  20. Crisp, D. J. (1974). Energy relations of marine invertebrate larvae. Thalassia Jugoslavica 10: 103–120Google Scholar
  21. Crisp, D. J. (1978). Genetic consequences of different reproductive strategies in marine invertebrates. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology and evolution. Plenum, New York, 257–273Google Scholar
  22. Crisp, D. J., Southward, A. J. (1958). The distribution of intertidal organisms along the coasts of the English Channel. J. mar. biol. Ass. U.K. 37: 147–208Google Scholar
  23. Dautzenberg, P. (1893). Description d'une nouvelle espèce du genre Littorina, provenant des côtes de la Tunisie. J. de Conchyliologie 41: 35–36Google Scholar
  24. Davis, D. S. (1971). Variation in the northern rough periwinkle, Littorina saxatilis (Olivi) in Nova Scotia. Proc. N. S. Inst. Sci. 27: 61–90Google Scholar
  25. Emery, A. R. (1972). Eddy formation from an oceanic island: ecological effects. Carib. J. Sci. 12: 121–128Google Scholar
  26. Fretter, V., Graham, A. (1980). The prosobranch molluscs of Britain and Denmark. Part 5. Marine Littorinacea. J. moll. Stud. Suppl. 7Google Scholar
  27. Fretter, V., Shale, D. (1973). Seasonal changes in population density and vertical distribution of prosobranch veligers in offshore plankton at Plymouth. J. mar. biol. Ass. U.K. 53: 471–492Google Scholar
  28. Gadgil, M. (1971). Dispersal: population consequences and evolution. Ecology 52: 253–261Google Scholar
  29. Gerlach, S. A. (1977). Means of meiofauna dispersal. Mikrofauna Meeresboden 61: 89–103Google Scholar
  30. Gofas, S. (1975). Sur l'extension de Littorina saxatilis (Olivi) (Moll. Gaster.) dans le detroit de Gibraltar. Bull. Soc. Sci. Nat. et Phys. du Marco 55: 95–99Google Scholar
  31. Hadfield, M. G. (1978). Growth and metamorphosis of planktonic larvae of Ptychodera flava (Hemichordata: Enteropneusta). In: Chia, F.-S., Rice, M. E. (1978). Settlement, and metamorphosis of marine invertebrate larvae. Elsevier, New York, p. 247–254Google Scholar
  32. Hawkins, S. J., Hiscock, K. (1983). Anomalies in the abundance of common eulittoral gastropods with planktonic larvae on Lundy Island, Bristol Channel. J. moll. Stud. 49: 86–88Google Scholar
  33. Hedgecock, D. (1986). Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. mar. Sci. 39: 550–564Google Scholar
  34. Highsmith, R. C. (1885). Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25: 169–179Google Scholar
  35. Hines, A. H. (1986). Larval patterns in the life of brachyuran crabs (Crustacea, Decapoda, Brachyura). Bull. mar. Sci. 39: 444–466Google Scholar
  36. Hines, A. H. (1986b). Larval problems and perspectives in life histories of marine invertebrates. Bull. mar. Sci. 39: 506–525Google Scholar
  37. Hughes, R. N. (1979). South African populations of Littorina rudis. Zool. J. Linn. Soc. 65: 119–126Google Scholar
  38. Jablonski, D. (1986). Larval ecology and macroevolution in marine invertebrates. Bull. mar. Sci. 39: 565–587Google Scholar
  39. Jablonski, D. (1987). Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science, N.Y. 238: 360–363Google Scholar
  40. Jablonski, D., Flessa, K. W., Valentine, J. W. (1985). Biogeography and paleobiology. Paleobiology 11: 75–90Google Scholar
  41. Jablonski, D., Lutz, R. A. (1983). Larval ecology of marine benthic invertebrates: paleobiological implications. Biol. Rev. 58: 21–89Google Scholar
  42. Jackson, J. B. C. (1986). Modes of dispersal of clonal benthic invertebrates: consequences for species' distributions and genetic structure of local populations. Bull. mar. Sci. 39: 588–606Google Scholar
  43. Janson, K. (1985). A morphologic and genetic analysis of Littorina saxatilis (Prosobranchia) from Venice, and on the problem of saxatilis-rudis nomenclature. Biol. J. Linn. Soc. 24: 51–59Google Scholar
  44. Janson, K. (1987). Genetic drift in small and recently founded populations of the marine snail Littorina saxatilis. Heredity 58: 31–37Google Scholar
  45. Kempf, S. C. (1981). Long-lived larvae of the gastropod Aplysia juliana: do they disperse or just slowly fade away? Mar. Ecol. Prog. Ser. 6: 61–65Google Scholar
  46. Kilburn, R. N. (1972). Taxonomic notes on South African marine mollusca (2), with the description of new species and subspecies of Conus, Nassarius, Vexillum and Demoulia. Ann. Natal. Mus. (Pietermaritzburg) 21: 391–437Google Scholar
  47. Knight, A. J., Hughes, R. N., Ward, R. D. (1987). A striking example of the founder effect in the mollusc Littorina saxatilis. Biol. J. Linn. Soc. 32: 417–426Google Scholar
  48. Knudsen, J. (1950). Egg capsules and development of some marine prosobranchs from tropical West Africa. Atlantide Report 1: 85–130Google Scholar
  49. Lobel, P. S., Robinson, A. R. (1986). Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep-Sea Res. (A), 33: 483–500Google Scholar
  50. Malone, C. R. (1965). Killdeer (Charadrius vociferus Linnaeus) as a means of dispersal for aquatic gastropods. Ecology 46: 551–552Google Scholar
  51. McDowall, R. M. (1968). Oceanic islands and endemism. Syst. Zool. 17: 346–350Google Scholar
  52. Mileikovsky, S. A. (1971). Types of larval development in marine bottom invertebrates their distribution and ecological significance: a reevaluation. Mar. Biol. 10: 193–213Google Scholar
  53. Moore, P. H. (1977). Additions to the littoral fauna of Rockall, with a description of Araeolaimus penelope sp.nov. (Nematoda: Axonolaimidae). J. mar. biol. Ass. U.K. 57: 191–200Google Scholar
  54. Okubo, A. (1971). Oceanic diffusion diagrams. Deep-Sea Res. 18: 789–802Google Scholar
  55. Palmer, A. R., Strathmann, R. R. (1981). Scale of dispersal in varying environments and its implications for life histories of marine invertebrates. Oecologia (Berl.) 48: 308–318Google Scholar
  56. Rosewater, J. (1975). An annotated list of the marine mollusks of Ascension Island, South Atlantic. Ocean. Smithsonian Contrib. Zool. No. 189Google Scholar
  57. Scheltema, R. S. (1971). Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. 140: 284–322Google Scholar
  58. Scheltema, R. S. (1978). On the relationship between dispersal of pelagic veliger larvae and the evolution of marine prosobranch gastropods. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology and evolution. Plenum, New York, p. 303–322Google Scholar
  59. Scheltema, R. S. (1986a). On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull. mar. Sci. 39: 290–322Google Scholar
  60. Scheltema, R. S. (1986b). Long-distance dispersal by planktonic larvae of shoal-water benthic invertebrates among central Pacific islands. Bull. mar. Sci. 39: 241–256Google Scholar
  61. Strathmann, R. R. (1974). The spread of sibling larvae of sedentary marine invertebrates. Amer. Nat. 108: 29–44Google Scholar
  62. Strathmann, R. R. (1978). Length of pelagic period in echinoderms with feeding larvae from the northeast Pacific. J. exp. mar. Biol. Ecol. 34: 23–27Google Scholar
  63. Strathmann, R. R. (1986). What controls the type of larval development? Summary statement for the evolution session. Bull. mar. Sci. 39: 616–622Google Scholar
  64. Stroud, D. A., Knudsen, J. (1982). The demography and reproduction of Littorina rudis Maton, 1797 from Greenland. In: Fox, A. D., Stroud, D. A. (eds.) Report of the 1979 Greenland Whitefronted Goose Study Expedition to Equalungmiut Nunat, West Greenland. Aberystwyth, p. 257–267Google Scholar
  65. Thorson, G. (1946). Reproduction and larval development of Danish marine bottom invertebrates. Medd. Komm. Danm. Fisk.-Og. Havunders. ser. Plankton 4: 1–523Google Scholar
  66. Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45Google Scholar
  67. Todd, C. D., Doyle, R. W. (1981). Reproductive strategies of marine benthic invertebrates: a settlement timing hypothesis. Mar. Ecol. Prog. Ser. 4: 75–83Google Scholar
  68. Vance, R. R. (1973). On reproductive strategies in marine benthic invertebrates. Am. Nat. 107: 339–352Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. Johannesson
    • 1
  1. 1.Tjärnö Marine Biological LaboratoryStrömstadSweden

Personalised recommendations