Marine Biology

, Volume 92, Issue 4, pp 489–503

Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico

IV. Ecological aspects
  • P. Jensen


Nematodes sampled quantitatively in 1980 along a 96-m-long sulphide-rich brine seep gradient system in the NW Gulf of Mexico are characterized and compared with species from bottoms adjacent and beyond the influence of the brine. The age structure indicates permanent living populations within and outside the gradient system. Species composition shows a thiobiotic association and an oxybiotic association of nematodes, and each association is composed of two subgroups with a fifth group of species living in the ecotone. Such a distinction can also be shown in terms of dominance-diversity. The thiobiotic species are regarded as derived from their oxybiotic relatives and not the reverse. Nematodes describe environmental complexity since slenderness of the body correlates with the amount of dissolved sulphide in the environment. Body elongation, i.e. higher proportion of body surface area per unit body volume and shorter body radius, is suggested to be an adaptation to low oxygen tension in the environment as well as an adaptation to epidermal uptake of dissolved organic matter as additional nourishment of thiobiotic species. Analyses of buccal cavity structures and species distribution patterns show resource partitioning among most abundant species and congeneric species. Deposit feeders have a size diversity of buccal cavities similar to that of epistrate feeders and ominivore-predators. Deposit feeding prevails in the thiobios, but not in the oxybios.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alongi, D. M. and J. H. Tietjen: Population growth and trophic interactions among free-living marine nematodes. In: Marine benthic dynamics, pp 151–166, Ed. by K. R. Tenore and B. C. Coull. Columbia: Umv. South Carolina Press 1980Google Scholar
  2. Bernal, L. D.: The origin of life, 345 pp. London: Weidenfeld and Nicolson 1967Google Scholar
  3. Blome, D.: Ökologie der Nematoda eines Sandstrandes der Nordseeinsel Sylt. Mikrofauna Meeresbod. 88, 1–76 (1983)Google Scholar
  4. Boaden, P. J. S.: Three new thiobiotic gastrotricha. Cah. Biol. mar. 15, 367–378 (1974)Google Scholar
  5. Boaden, P. J. S.: Anaerobiosis, meiofauna and early metazoan evolution. Zool. Ser. 4, 21–24 (1975)Google Scholar
  6. Boaden, P. J. S.: Thiobiotic facts and fancies (aspects of the distribution and evolution of anaerobic meiofauna). In: The meiofauna species in time and space, Ed. by W. Sterrer and P. Ax. Mikrofauna Meeresbod. 61, 45–63 (1977)Google Scholar
  7. Boaden, P. J. S.: Meiofauna thiobios and “the Arenicola negation”: case not proven. Mar. Biol. 58, 25–29 (1980)Google Scholar
  8. Boaden, P. J. S. and H. M. Platt. Daily migration patterns in an intertidal meiobenthic community. Thalassia jugosl. 7, 1–12 (1971)Google Scholar
  9. Bouwman, L. A.: A survey of nematodes from the Ems estuary. Part II: Species assemblages and associations. Zool. Jb. Syst. 110, 345–376 (1983)Google Scholar
  10. Bright, T. J., P. A. LaRock, R. D. Lauer and J. M. Brooks: A brine seep at the East Flower Garden Bank, northwestern Gulf of Mexico. Int. Revue ges. Hydrobiol. 65, 535–549 (1980)Google Scholar
  11. Brooks, J. M., T. J. Bright, B. B. Bernard and C. R. Schab: Chemical aspects of a brine pool at the East Flower Garden Bank, nortwestern Gulf of Mexico. Limnol. Oceanogr. 24, 735–745 (1979)Google Scholar
  12. Chia, F. S. and R. M. Warwick: Assimilation of labelled glucose from seawater by marine nematodes. Nature, Lond. 224, 720–721 (1969)Google Scholar
  13. Crezee, M.: Solenofilomorphidae (Acoela), a major component of a new turbellarian association in the sulphide system. Int. Revue ges. Hydrobiol. 61, 105–129 (1976)Google Scholar
  14. Decraemer, W. and P. Jensen: Revision of the subfamily Meyliinae De Coninck, 1965 (Nematoda: Desmoscolecoidea) with a discussion of its systematic position. Zool. J. Linn. Soc., Lond. 75, 317–325 (1982)Google Scholar
  15. Duffy, J. E. and S. Tyler: Quantitative differences in mitochondrial ultrastructure of a thiobiotic and an oxybiotic turbellarian. Mar. Biol. 83, 95–102 (1984)Google Scholar
  16. Ehlers, U.: Zur Populationsstruktur interstitieller Typhoplanoida und Dalyellioidea (Turbellaria, Neorhabdocoela). Untersuchungen an einem mittelotischen Sandstrand der Nordseeinsel Sylt. Mikrofauna Meeresbod. 19, 1–105 (1973)Google Scholar
  17. Farke, H. and F. Riemann. Dissolved organic carbon in littoral sediments: concentrations and available amounts demonstrated by the percolation method. Veröff. Inst. Meeresforsch., Bremerh. 18, 25–240 (1980)Google Scholar
  18. Farris, R. A.: Systematics and ecology of Gnathostomulida from North Carolina and Bermuda. 197 pp. Ph.D. dissertation. University of North Carolina at Chapel Hill 1976, 235–244 (1980)Google Scholar
  19. Fenchel, T.: The ecology of micro- and meiobenthos. A. Rev. Ecol. Syst. 9, 99–121 (1978)Google Scholar
  20. Fenchel, T., T. Perry and A. Thane: Anaerobiosis and symbiosis with bacteria in free-living ciliates. J. Protozool. 24, 154–163 (1977)Google Scholar
  21. Fenchel, T. and R. J. Riedl: The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–268 (1970)Google Scholar
  22. Gerlach, S. A. and F. Riemann: The Bremerhaven checklist of aquatic nematodes. A catalogue of Nematoda Adenophorea excluding the Dorylaimida. Veröff. Inst. Meeresforsch. Bremerh. Suppl. 4, 1–404 (1973) and 405–734 (1974)Google Scholar
  23. Giere, O., G. Liebezeit and R. Dawson: Habitat conditions and distribution patterns of the gutless oligochaete Phallodrilus leukodermatus. Mar. Ecol. Prog. Ser. 8, 291–299 (1982)Google Scholar
  24. Gittings, S. R., T. J. Bright and E. N. Powell: Hard-bottom macrofauna of the East Flower Garden brine seep: impact of a long-term, sulfurous brine discharge. Contr. mar. Sci. 27, 105–125 (1984)Google Scholar
  25. Hicks, G. R. F. and B. A. Marshall: Sex selective predation of deep-sea meiobenthic copepods by pectinacean bivalves and its influence on copepod sex ratios. N.Z.J. mar. freshwat., Res. 19, 227–231 (1985)Google Scholar
  26. Hopper, B. E. and R. C. Cefalu: Free-living marine nematodes from Biscane Bay, Florida. V. Stilbonematinae: contributions to the taxonomy and morphology of the genus Eubostrichus Greef and related genera. Trans. Am. microsc. Soc. 94, 578–591 (1973)Google Scholar
  27. Jensen, P.: Species, distribution and a microhabitat theory for marine mud dwelling Comesomatidae (Nematoda) in European waters. Cah. Biol. mar. 22, 231–241 (1981)Google Scholar
  28. Jensen, P.: Meiofaunal abundance and vertical zonation in a sublittoral soft bottom, with a test of the Haps corer. Mar. Biol. 74, 319–326 (1983)Google Scholar
  29. Jensen, P.: Ecology of benthic and epiphytic nemodes in brackish waters. Hydrobiologia 108, 201–217 (1984)Google Scholar
  30. Jensen, P.: The nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. I. Chromadorida. Zool. Scr. 14, 247–263 (1985)Google Scholar
  31. Jensen, P.: The nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. II. Monhysterida. Zool. Scr. 15, 1–11 (1986a)Google Scholar
  32. Jensen, P.: The nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. III. Enoplida. Zool. Scr. 15, 93–99 (1986b)Google Scholar
  33. Jensen, P.: Microhabitat, abundance, biomass and body size distinction between oxybiotic and thiobiotic nematodes in a sandy bottom from Øresund. (In preparation)Google Scholar
  34. Jørgensen, B. B.: Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41, 7–17 (1977a)Google Scholar
  35. Jørgensen, B. B.: The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22, 814–832 (1977b)Google Scholar
  36. Jørgensen, B. B. and T. Fenchel: The sulfur cycle of a marine sediment model system. Mar. Biol. 24, 189–201 (1974)Google Scholar
  37. Jørgensen, B. B., N. P. Revsbech, T. H. Blackburn and Y. Cohen: Diurnal cycles of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobactrial mat sediment. Appl. envir. Microbiol. 38, 46–58 (1979)Google Scholar
  38. Jørgensen, B. B., N. P. Revsbech and Y. Cohen: Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28, 1075–1093 (1983)Google Scholar
  39. Jørgensen, C. B.: August Pütter, August Krogk, and the modern ideas on the use of dissolved organic matter in aquatic environments. Biol. Rev. 51, 291–328 (1976)Google Scholar
  40. Jørgensen, N. O. G.: Annual variation of dissolved free primary amines in estuarine waters and sediments. Oecologia 40, 207–217 (1979a)Google Scholar
  41. Jørgensen, N. O. G.: Uptake of L-valine and other amino acids by the polychaete Nereis virens. Mar. Biol. 52, 45–52 (1979b)Google Scholar
  42. Jørgensen, N. O. G. and E. Kristensen: Uptake of amino acids by three species of Nereis (Annelida: Polychaeta). I. Transport kinetics and net uptake from natural concentrations. Mar. Ecol. Prog. Ser. 3, 329–340 (1980a)Google Scholar
  43. Jørgensen, N. O. G. and E. Kristensen: Uptake of amino acids by three species of Nereis (Annelida: Polychaeta). II. Effects of anaerobiosis. Mar. Ecol. Prog. Ser. 3, 341–346 (1980b)Google Scholar
  44. Krumbein, W. E., H. Buchholz, P. Franke, D. Giani, G. Giele and K. Wonneberger: O2 and H2S coexistence in stromatolites. A model for the origin of mineralogical lamination in stromatolites and banded iron formations. Naturwissenschaften 66, 381–389 (1979)Google Scholar
  45. Krumbein, W. E., Y. Cohen and M. Shilo: Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnol. Oceanogr. 22, 635–656 (1977)Google Scholar
  46. Kuenen, J. G.: Colourless sulfur bacteria and their role in the sulfur cycle. Plant Soil 43, 49–76 (1975)Google Scholar
  47. Lambshead, P. J. D., H. M. Platt and K. M. Shaw: The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. J. nat. Hist., Lond. 17, 859–874 (1983)Google Scholar
  48. Lopez, G., F. Riemann and M. Schrage: Feeding biology of the brackish-water oncholaimid nematode Adoncholaimus thalassophygas. Mar. Biol. 54, 311–318 (1979)Google Scholar
  49. Lorenzen, S.: Entwurf eines phylogenetischen Systems der freilebenden Nematoden. Veröff. Inst. Meeresforsch. Bremerh. Suppl. 7, 1–472 (1981)Google Scholar
  50. Maguire, C. and P. J. S. Boaden: Energy and evolution in the thiobios: an extrapolation from the marine gastrotrich Thiodasys sterreri. Cah. Biol. mar. 16, 635–646 (1975)Google Scholar
  51. Meyer-Reil, L.-A. and A. Faubel: Uptake of organic matter by meiofauna organisms and interrelationships with bacteria. Mar. Ecol. Prog. Ser. 3, 251–256 (1980)Google Scholar
  52. Montagna, P. A.: Competition for dissolved glucose between meiobenthos and sediment microbes. J. exp. mar. Biol. Ecol. 76, 177–190 (1984)Google Scholar
  53. Nuss, B.: Ultrastrukturelle und ökologische Untersuchungen an kristalloiden Einschlüssen der Muskeln eines sulfidtoleranten limnischen Nematoden (Tobrilus gracilis). Veröff., Inst. Meeresforsch. Bremerh. 20, 3–15 (1984)Google Scholar
  54. Ott, J. A.: Determination of fauna boundaries of nematodes in an intertidal sand flat. Int. Revue ges. Hydrobiol. 57, 645–663 (1972)Google Scholar
  55. Ott, J. A. and F. Schiemer: Respiration and anaerobiosis of freeliving nematodes from marine and limnic sediments. Neth. J. Sea Res. 7, 233–243 (1973)Google Scholar
  56. Ott, J. A., G. Rieger and F. Enderes: New mouthless interstitial worms from the sulphide system: symbiosis with procaryotes. P.S.Z.N.I.: Mar. Ecol. 3, 313–333 (1982)Google Scholar
  57. Platt, H. M.: Vertical and horizontal distribution of free-living marine nematodes from Strangford Lough, northern Ireland. Cah. Biol. mar. 18, 261–273 (1977)Google Scholar
  58. Platt, H. M.: Meiofauna dynamics and the origin of the metazoa. In: The evolving biosphere. II. Coexistence and coevolution, pp 207–216. Ed. by P. L. Forey. British Museum (Nat. Hist.). Cambridge: Cambridge Univ. Press 16 1980Google Scholar
  59. Powell, E. N. and T. J. Bright: A thiobios exists — gnathostomulid domination of the canyon community at the East Flower Garden brine seep. Int. Revue ges. Hydrobiol. 66, 675–683 (1981)Google Scholar
  60. Powell, E. N., M. A. Crenshaw and R. M. Rieger: Adaptation to sulfide in the meiofauna of the sulfide system. I. 35S-sulfide accumulation and the presence of a sulfide detoxification system. J. exp. Biol. Ecol. 37, 57–76 (1979)Google Scholar
  61. Powell, E. N., T. J. Bright, A. Woods and S. Gittings: Meiofauna and the thiobios in the East Flower Garden brine seep. Mar. Biol. 73, 269–283 (1983)Google Scholar
  62. Powell, E. N., T. J. Bright, A. Woods, S. Gittings and J. Johansen: The East Flower Garden brine seep: implications for benthic communities. Texas A & M University, College Station, Texas. Technical Report No. 81-6-T, 1–101 (1982)Google Scholar
  63. Reise, K.: Gnathostomulida abundant alongside polychaete burrows. Mar. Ecol. Prog. Ser. 6, 329–333 (1981a)Google Scholar
  64. Reise, K.: High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoländer Meeresunters. 34, 413–425 (1981b)Google Scholar
  65. Reise, K. and P. Ax: A meiofauna “thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Mar. Biol. 54, 225–237 (1979)Google Scholar
  66. Reise, K. and P. Ax: Statement on the thiobios-hypothesis. Mar. Biol. 58, 31–32 (1980)Google Scholar
  67. Reysbech, N. P., B. B. Jørgensen, T. H. Blackburn and Y. Cohen: Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28, 1062–1074 (1983)Google Scholar
  68. Rezak, R. and T. J. Bright: Seafloor instability at the East Flower Garden Bank, northwest Gulf of Mexico. Geol. mar. Lett. 1, 97–103 (1981)Google Scholar
  69. Riedl, R. J.: Probleme and Methoden der Erforschung des litoralen Benthos. Zool. Anz. Suppl. 26, 505–567 (1963)Google Scholar
  70. Riedl, R. J.: Biologie der Meereshöhlen, 636 pp. Hamburg: Paul Parey 1966Google Scholar
  71. Romeyn, K. and L. Bouwman: Food selection and consumption by estuarine nematodes. Hydrobiol. Bull. 17, 103–109 (1983)Google Scholar
  72. Schiemer, F. and A. Duncan: Oxygen consumption of a freshwater benthic nematode, Tobrilus gracilis Bastian. Oecologia 15, 121–126 (1974)Google Scholar
  73. Shirayama, Y.: Vertical distribution of meiobenthos in the sediment profile in bathyal, abyssal and hadal deep sea systems of the Western Pacific. Oceanologica Acta 7, 123–129 (1984)Google Scholar
  74. Stephens, G. C.: Uptake of organic material by aquatic invertebrates. II. Accumulation of amino acids by the bamboo worm, Clymenella torquata. Comp. Biochem. Physiol. 10, 191–202 (1963)Google Scholar
  75. Stephens, G. C.: Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish water annelids. Biol. Bull. mar. biol. Lab., Woods Hole 126, 150–162 (1964)Google Scholar
  76. Stephens, G. C.: Dissolved organic matter as a potential source of nutrition for marine organisms. Am. Zool. 8, 95–106 (1968)Google Scholar
  77. Stephens, G. C.: Uptake of naturally occurring primary amines by marine annelids. Biol. Bull. mar. biol. Lab., Woods Hole 149, 397–407 (1975)Google Scholar
  78. Sterrer, W. and R. Rieger: Retronectidae — a new cosmopolitan marine family of Catenulida (Turbellaria). In: The biology of the Turbellaria, pp 63–92. Ed. by N. Riser and M. Morse. New York: McGraw Hill Book Co. 1974Google Scholar
  79. Teal, J. M. and W. Wieser: The distribution and ecology of nematodes in a Georgia salt-marsh. Limnol. Oceanogr. 11, 217–222 (1966)Google Scholar
  80. Tietjen, J. H. and J. J. Lee: Axenic culture and uptake of dissolved organic substances by the marine nematode Rhabditis marina Bastian. Cah. Biol. mar. 16, 685–694 (1975)Google Scholar
  81. Tietjen, J. H. and J. J. Lee: Feeding behaviour of marine nematodes. In: Ecology of marine benthos, pp 21–35. Ed. by B. C. Coull. Columbia: Univ. South Carolina Press 1977Google Scholar
  82. Warwick, R. M. and J. M. Gee: Community structure of estuarine meiobenthos. Mar. Ecol. Prog. Ser. 18 97–111 (1984)Google Scholar
  83. Warwick, R. M. and R. Price: Ecological and metabolic studies on free-living nematodes from an estuarine mud-flat. Estuar. cstl mar. Sci. 9, 257–271 (1979)Google Scholar
  84. Wieser, W.: Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark. Zool. 4, 439–484 (1953)Google Scholar
  85. Wieser, W.: Eine ungewöhnliche Assoziation zwischen Blaualgen und freilebenden marinen Nematoden. Österr. bot. Z. 106, 81–87 (1959)Google Scholar
  86. Wieser, W.: The meiofauna as a tool in the study of habitat heterogeneity: ecophysiological aspects. A review. Cah. Biol. mar. 16, 647–670 (1975)Google Scholar
  87. Wieser, W., J. A. Ott, F. Schiemer and E. Gnaiger: An ecophysiological study of meiofauna species inhabiting a sandy beach at Bermuda. Mar. Biol. 26, 235–248 (1974)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Jensen
    • 1
  1. 1.Marine Biological LaboratoryUniversity of CopenhagenHelsingørDenmark
  2. 2.Sonderforschungsbereich 313 der Universität KielKiel 1Federal Republic of Germany

Personalised recommendations