Advertisement

Marine Biology

, Volume 84, Issue 3, pp 267–274 | Cite as

Nitrogen uptake and growth of the germlings and mature thalli of Fucus distichus

  • T. E. Thomas
  • P. J. Harrison
  • E. B. Taylor
Article

Abstract

Fucus distichus L. was collected near Vancouver, Canada, in late fall and early winter, 1981. The effects of the forms of nitrogen (nitrate, ammonium or urea) and periodic exposure to air on growth, rhizoid development and nitrogen uptake in germlings was investigated. Gamete release, fertilization, germination and germling growth had no requirement for a specific form of nitrogen. Periodic exposure to air increased secondary rhizoid development twofold. Nitrate and ammonium uptake rates of the germlings were higher than for the mature thalli (20 to 40 times for nitrate and 8 times for ammonium), while the halfsaturation constant (Ks) values for nitrate were similar (1 to 5 μM). The germlings showed saturable uptake kinetics but the mature thalli did not. When germlings were exposed to air it caused a 70% decrease in nitrate uptake, but not change in ammonium uptake. Ammonium uptake in the mature thalli was proportional to the ambient ammonium concentration. Nitrate uptake in the mature thalli appeared to follow saturation kinetics at low nitrate concentrations, but showed a non-saturable component at concentrations greater than 10 μM. Presence of ammonium inhibited nitrate uptake by the mature plants but not by the germlings.

Keywords

Nitrate Periodic Exposure Nitrogen Uptake Nitrate Uptake Early Winter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Biebl, R.: Trockenresistenz und osmotische Empfindlichkeit der Meeresalgen verschieden tiefer Standorte. Jb. wiss. Bot. 86, 350–358 (1938)Google Scholar
  2. Bird, K. T., C. Habig and T. DeBusk: Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J. Phycol. 18, 344–348 (1982)Google Scholar
  3. Chapman, A. R. O.: A critique of prevailing attitudes towards the control of seaweed zonation on the sea shore. Botanica mar. 16, 80–82 (1973)Google Scholar
  4. Chapman, A. R. O. and J. S. Craigie: Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977)Google Scholar
  5. Connell, J. H.: Community interactions on marine rocky intertidal shores. A. Rev. Ecol. Syst. 3, 169–192 (1972)Google Scholar
  6. Conway, H. L. and P. J. Harrison: Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Mar. Biol. 43, 33–43 (1977)Google Scholar
  7. Davis, C. O., P. J. Harrison and R. C. Dugdale: Continuous culture of marine diatoms under silicate limitation. I. Synchronized life cycle of Skeletonema costatum. J. Phycol. 9, 175–180 (1973)Google Scholar
  8. DeBoer, J. A., H. J. Gugli, T. L. Israel and C. F. D'Elia: Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J. Phycol. 14, 261–266 (1978)Google Scholar
  9. D'Elia, C. F. and J. A. DeBoer: Nutritional studies of two red algae. II. Kinetics of ammonium and nitrate uptake. J. Phycol. 14, 266–272 (1978)Google Scholar
  10. Doty, M. S.: Critical tide factors that are correlated with the vertical distribution of marine algae and other organisms along the Pacific Coast. Ecology 27, 315–328 (1946)Google Scholar
  11. Guillard, R. R. L. and J. H. Ryther: Studies on marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleave) Gran. Can. J. Microbiol. 8, 229–239 (1962)Google Scholar
  12. Haines, K. C. and P. A. Wheeler. Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J. Phycol. 14, 319–324 (1978)Google Scholar
  13. Hanisak, M. D. and M. M. Harlin: Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). J. Phycol. 14, 450–454 (1978)Google Scholar
  14. Harlin, M. M.: Nitrate uptake by Enteromorpha spp. (Chlorophyceae): applications to aquaculture systems. Aquaculture, Amsterdam 15, 373–376 (1978)Google Scholar
  15. Harlin, M. M. and J. S. Craigie: Nitrate uptake by Laminaria longicruris (Phaeophyceae). J. Phycol. 14, 464–467 (1978)Google Scholar
  16. Harrison, P. J. and L. D. Druehl: Nutrient uptake and growth in the Laminariales and other macrophytes: a consideration of methods. In: Synthetic and degradative processes in marine macrophytes, pp 99–120. Ed. by L. M. Srivastava. New York: Walter de Gruyter 1982Google Scholar
  17. Johnson, W. S., A. Gigon, S. L. Gulmon and H. A. Mooney: Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55, 450–453 (1974)Google Scholar
  18. Jones, W. E. and J. M. Kain: Subtidal algal colonization following the removal of Echinus. Helgoländer wiss. Meeresunters. 15, 460–466 (1967)Google Scholar
  19. Kautsky, L.: Primary production and uptake kinetics of ammonium and phosphate by Enteromorpha compressa in an ammonium sulfate industry outlet area. Aquat. Bot. 12, 23–40 (1982)Google Scholar
  20. Lewis, J. R.: The ecology of rocky shores, 323 pp. London: English University Press 1964Google Scholar
  21. Mann, K. H.: Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of seaweeds. Mar. Biol. 14, 199–209 (1972)Google Scholar
  22. Mathieson, A. C.: Physiological ecology of the brown alga Phaeostrophion irregulare Setchell et Gardner. I. Juvenile plants. Botanica mar. 25, 87–91 (1982)Google Scholar
  23. McLachlan, J.: Effects of temperature and light on growth and development of embryos of Fucus edentatus and F. distichus ssp. distichus. Can. J. Bot. 52, 943–951 (1974)Google Scholar
  24. McLachlan, J., L. C. M. Chen and T. Edelstein: The culture of four species of Fucus under laboratory conditions. Can. J. Bot. 49, 1463–1469 (1971)Google Scholar
  25. Pollock, E. G.: Fertilization in Fucus. Planta 92, 85–99 (1970)Google Scholar
  26. Prince, J. S.: Nutrient assimilation and growth of some seaweeds in mixtures of seawater and secondary sewage treatment effluents. Aquaculture, Amsterdam 4, 69–79 (1974)Google Scholar
  27. Quadir, A., P. J. Harrison and R. E. DeWreede: The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 18, 83–88 (1979)Google Scholar
  28. Rosenberg, G. and J. Ramus: Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): soluble nitrogen and reserve carbohydrates. Mar. Biol. 66, 251–259 (1982)Google Scholar
  29. Schonbeck, M. W. and T. A. Norton: The effects of brief periodic submergence on intertidal fucoid algae. Estuar. cstl mar. Sci. 8, 205–211 (1979a)Google Scholar
  30. Schonbeck, M. W. and T. A. Norton: Drought-hardening in the upper-shore seaweeds Fucus spiralis and Pelvetia canaliculata. J. Ecol. 67 687–696 (1979b)Google Scholar
  31. Silva, P. C.: The benthic algal flora of central San Francisco Bay. In: San Francisco Bay: the urbanized estuary, pp 287–345. Ed. by T. J. Conomos. San Francisco: American Association for the Advancement of Science, Pacific Division 1979Google Scholar
  32. Subbaraju, D. P., T. Ramakrishna and M. Sreedhara Murthy: Influence of changes in salinity, pH, and temperature on the spores and sporelings of Padina tetrastromatica Hauck. J. exp. mar. Biol. Ecol. 58, 163–173 (1982)Google Scholar
  33. Syrett, P. J.: Nitrogen metabolism in microalgae. Can. Bull. Fish. aquat. Sciences 210, 182–210 (1981)Google Scholar
  34. Terry, L. A. and B. L. Moss: The effect of irradiance and temperature on the germination of four species of Fucales. Br. phycol. J. 16, 143–151 (1981)Google Scholar
  35. Thomas, T. E.: Ecological aspects of nitrogen uptake in intertidal macrophytes, 207 pp. Ph.D. thesis, University of British Columbia, Vancouver, Canada 1983Google Scholar
  36. Thomas, T. E. and D. H. Turpin: Desiccation enhanced nutrient uptake rates in the intertidal alga Fucus distichus. Botanica mar. 23, 479–481 (1980)Google Scholar
  37. Topinka, J. A.: Nitrogen uptake by Fucus spiralis (Phaeophyceae). J. Phycol. 14, 241–247 (1978)Google Scholar
  38. Topinka, J. A. and J. V. Robbins: Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus spiralis. Limnol. Oceanogr. 21, 659–664 (1976)Google Scholar
  39. Wheeler, W. N.: Nitrogen nutrition of Macrocystis. In: Synthetic and degradative processes in marine macrophytes, pp 121–137. Ed. by L. M. Srivastava. New York: Walter de Gruyter 1982Google Scholar
  40. Yamada, N.: Studies on the manure for seaweed. I. On the change of nitrogenous component of Gelidium amansii Lmx. cultured with different nitrogen sources. Bull. Jap. Soc. scient. Fish. 27, 953–957 (1961)Google Scholar
  41. Zaneveld, J. S.: The littoral zonation of some Fucaceae in relation to desiccation. J. Ecol. 25, 431–468 (1937)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. E. Thomas
    • 1
  • P. J. Harrison
    • 1
  • E. B. Taylor
    • 1
  1. 1.Department of Botany and OceanographyUniversity of British ColumbiaVancouverCanada

Personalised recommendations