Marine Biology

, Volume 84, Issue 3, pp 239–251 | Cite as

Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance

  • V. S. Smetacek


Rapid mass sinking of cells following diatom blooms, observed in lakes and the sea, is argued here to represent the transition from a growing to a resting stage in the life histories of these algae. Mass sinking is of survival value in those bloom diatoms that retain viability over long periods in cold, dark water but not in warm, nutrient-depleted surface water. Mechanisms for accelerating sinking speed of populations entering a resting or “seeding” mode are proposed. Previously unexplained features of diatom form and behaviour take on a new meaning in this context of diatom seeding strategies. Diatoms have physiological control over buoyancy as declining growth is accompanied by increasing sinking rates, where the frustule acts as ballast. Increased mucous secretion in conjunction with the cell protuberances characteristic of bloom diatoms leads to entanglement and aggregate formation during sinking; the “sticky” aggregates scavenge mineral and other particles during descent which further accelerates the sinking rate. Such diatom flocs will have sinking rates of ∼ 100 m d-1 or more. This is corroborated by recent observations of mass phytoplankton sedimentation to the deep sea. This mechanism would explain the origin of marine snow flocs containing diatoms in high productivity areas and also the well-known presence of a viable deep sea flora. That mortality is high in such a seeding strategy is not surprising. A number of species-specific variables pertaining to size, morphology, physiology, spore formation and frustule dissolution rate will determine the sinking behaviour and thus control positioning of resting stages in the water column or on the bottom. It is argued that sinking behaviour patterns will be environmentally selected and that some baffling aspects of diatom form and distribution can be explained in this light. Rapid diatom sedimentation is currently believed to be mediated by zooplankton faecal pellets, particularly those of copepods. This view is not supported by recently published observations. I speculate that copepod grazing actually retards rather than accelerates vertical flux, because faecal pellets tend to be recycled within the surface layer by the common herbivorous copepods. Egestion of undigested food by copepods during blooms acts as a storage mechanism, as ungrazed cells are likely to initiate mass precipitation and depletion of the surface layer in essential elements. Unique features of diatoms are discussed in the light of their possible evolution from resting spores of other algae. An evolutionary ecology of pelagic bloom diatoms is deduced from behavioural and morphological characteristics of meroplanktonic and tychopelagic forms. Other shell-bearing protistan plankters share common features with diatoms. Similar life-history patterns are likely to be present in species from all these groups. The geological significance of mass diatom sinking in rapidly affecting transfer of biogenic and mineral particles to the sea floor is pointed out.


Faecal Pellet Bloom Diatom Sinking Rate Copepod Grazing Seeding Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L.: The chemical composition of macroscopic aggregates in two neritic seas. Limnol. Oceanogr. 24, 855–866 (1979)Google Scholar
  2. Alldredge, A. L. and M. W. Silver: Abundance and production rates of floating diatom mats (Rhizosolenia castracanei and R. imbricata var. shrubsolei) in the eastern Pacific ocean. Mar. Biol. 66, 83–91 (1982)Google Scholar
  3. Anderson, O. R.: The ultrastructure and cytochemistry of resting cell formation in Amphora coffaeformis (Bacillariophyceae). J. Phycol. 11, 272–281 (1975)Google Scholar
  4. Anderson, L. W. J. and B. M. Sweeney: Role of inorganic ions in controlling sedimentation rate of a marine centric diatom Ditylum brightwelli. J. Physiol. 14, 204–214 (1978)Google Scholar
  5. Angel, M. V.: Detrital organic fluxes through pelagic ecosystems. In: Flows of energy and materials in marine ecosystems: theory and practice, pp 475–516. Ed. by M. J. R. Fasham. New York: Plenum Press 1984Google Scholar
  6. Avnimelech, T., B. W. Troeger, L. W. Reed: Mutual flocculation of algae and clay: evidence and implications. Science, N.Y. 216, 63–65 (1982)Google Scholar
  7. Berger, W. H.: Biogenous deep sea sediments: production, preservation and interpretation. In: Chemical oceanography, 5, pp 265–388. Ed. by J. P. Riley and R. Chester. London: Academic Press 1976Google Scholar
  8. Bernard, F.: Vitesses de chute en mer des amas palmelloides de Cycloccolithus. Ses consequences pour le cycle vital des mers chaudes. Pelagos 1, 5–34 (1963)Google Scholar
  9. Bienfang, P. K.: Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61, 69–77 (1980)Google Scholar
  10. Bienfang, P. K.: Sinking rates of heterogeneous, temperate phytoplankton populations. J. Plankt. Res. 3, 235–253 (1981)Google Scholar
  11. Bienfang, P. K., P. J. Harrison and L. M. Quarmby: Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar Biol. 67, 295–302 (1982)Google Scholar
  12. Bienfang, P. K., J. Szyper and E. Laws: Sinking rate and pigment responses to light-limitation of a marine diatom: implications to dynamics of chlorophyll maximum layers. Oceanol. Acta 6, 55–62 (1983)Google Scholar
  13. Billett, D. S. M., R. S. Lampitt, A. L. Rice and R. F. C. Mantoura: Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature, Lond. 302, 520–522 (1983)Google Scholar
  14. Bodungen, B. v., K. v. Bröckel, V. Smetacek and B. Zeitzschel: Growth and sedimentation of the phytoplankton spring bloom in the Bornholm Sea (Baltic Sea). Kieler Meeresforsch. Sonderh. 5, 49–60 (1981)Google Scholar
  15. Colebrook, J. M.: Continuous plankton records: seasonal variation in the distribution and abundance of plankton in the North Atlantic Ocean and the North Sea. J. Plankt. Res. 4, 435–462 (1982)Google Scholar
  16. Dale, B.: Dinoflagellate resisting cysts: “benthic plankton”. In: Survival strategies of the algae, pp 69–136. Ed. by G. A. Fryxell. Cambridge: Cambridge University Press 1983Google Scholar
  17. Davies, J. M. and R. Payne: Supply of organic matter to the sediment in the northern North Sea during a spring phytoplankton bloom. Mar. Biol. 78, 315–324 (1984)Google Scholar
  18. Davis, C. O.: The importance of understanding phytoplankton life strategies in the design of enclosure experiments. In: Marine mesocosms, pp 323–332. Ed. by G. D. Grice and M. R. Reeve. New York: Springer Verlag 1982Google Scholar
  19. Davis, C. O., J. T. Hollibaugh, D. L. R. Seibert, W. H. Thomas and P. J. Harrison: Formation of resting spores by Leptocylindrus danicus (Bacillariophyceae) in a controlled experimental ecosystem. J. Phycol. 16, 296–302 (1980)Google Scholar
  20. Degens, E. T. and V. Ittekot: A new look at clay-organic interactions. Mitt. Geol.-Paläont. Inst. Univ. Hamburg 56, 229–248 (1984)Google Scholar
  21. Deuser, W. G., E. H. Ross and R. F. Anderson: Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Res. 28, 495–505 (1981)Google Scholar
  22. Deuser, W. G., P. G. Brewer, T. D. Jickells and R. D. Commeau: Biological control of the removal of abiogenic particles from the surface ocean. Science, N.Y. 219, 388–391 (1983)Google Scholar
  23. Doucette, G. J. and G. A. Fryxell: Thalassiosira antarctica: vegetative and resting stage chemical composition of an ice-related marine diatom. Mar. Biol. 78, 1–6 (1983)Google Scholar
  24. Drebes, G.: Marines phytoplankton 186 pp. Stuttgart: Georg Thieme Verlag 1974Google Scholar
  25. Dunbar, R. B. and W. H. Berger: Fecal pellet flux to modern bottom sediment of Santa Barbara Basin (California) based on sediment trapping. Bull. geol. Soc. Am. 92, 212–218 (1981)Google Scholar
  26. Durbin, E.: Aspects of the biology of resting spores of Thalassiosira nordenskiöldii and Detonula confervacea. Mar. Biol. 45, 31–37 (1978)Google Scholar
  27. Elbrächter, M.: Functional types of marine planktonic primary producers and their relative significance in the food web. In: Flows of energy and materials in marine ecosystems: theory and practice, pp 191–222. Ed. by M. J. R. Fasham. New York: Plenum Press 1984Google Scholar
  28. Elbrächter, M. and R. Boje: On the ecological significance of Thalassiosira partheneia in the Northwest African upwelling area. In: Upwelling ecosystems, pp 24–31. Ed. by R. Boje and M. Tomczak. Berlin: Springer-Verlag 1978Google Scholar
  29. Emery, K. O., I. A. Johns and S. Honjo: Organic films in particulate matter in surface waters off eastern Asia. Sedimentology 31, 503–514 (1984)Google Scholar
  30. Eppley, R. W., R. W. Holmes and J. D. H. Strickland: Sinking rates of marine phytoplankton measured with a fluorometer. J. exp. mar. Biol. Ecol. 1, 191–208 (1067)Google Scholar
  31. Eppley, R. W., E. H. Renger and P. R. Betzer: The residence time of particulate organic carbon in the surface layer of the ocean. Deep-Sea Res. 30, 311–323 (1983)Google Scholar
  32. Estrada, M. and D. Blasco: Two phases of the phytoplankton community in the Baja California upwelling. Limnol. Oceanogr. 24, 1065–1080 (1979)Google Scholar
  33. Fowler, S. W. and N. S. Fisher: Viability of marine phytoplankton in zooplankton fecal pellets. Deep-Sea Res. 30, 963–969 (1983)Google Scholar
  34. Fransz, H. G. and W. W. C. Gieskes: The unbalance of phytoplankton and copepods in the North Sea. Rapp. P.-v. Reun. Cons. int. Explor. Mer 183, 218–225 (1984)Google Scholar
  35. French, F. W. and P. E. Hargraves: Physiological characteristics of plankton diatom resting spores. Mar. Biol. Lett. 1, 185–195 (1980)Google Scholar
  36. Garrison, D. L.: Monterey Bay phytoplankton. II. Resting spore cycles in coastal diatom populations. J. Plankt. Res. 3, 137–156 (1981)Google Scholar
  37. Gowing, M. M. and M. W. Silver: Origins and microenvironments of bacteria mediating fecal pellet decomposition in the sea. Mar. Biol. 73, 7–16 (1983)Google Scholar
  38. Graf, G., W. Bengtsson, U. Diesner, R. Schulz and H. Theede: Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Mar. Biol. 67, 201–208 (1982)Google Scholar
  39. Graf, G., R. Schulz, R. Peinert and L.-A. Meyer-Reil: Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight. Mar. Biol. 77, 235–246 (1983)Google Scholar
  40. Guillard, R. R. L. and P. Kilham: The ecology of marine planktonic diatoms. In: The biology of diatoms, pp 372–469. Ed. by D. Werner. Oxford: Blackwell Scientific Publications 1977Google Scholar
  41. Hallberg, E. and H.-J. Hirche: Differentiation of mid-gut in adults and overwintering copepodids of Calanus finmarchicus (Gunnerus) and C. helgolandicus. J. exp. mar. Biol. Ecol. 48, 283–295 (1980)Google Scholar
  42. Hamner, W. M., P. P. Hamner, S. W. Strand and R. W. Gilmer: Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling, and molting. Science, N.Y. 220, 433–435 (1983)Google Scholar
  43. Hargraves, P. E. and F. W. French: Diatom resting spores: significance and strategies In: Survival strategies of the algae, pp 49–68. Ed. by G. A. Fryxell. Cambridge: Cambridge University Press 1983Google Scholar
  44. Heinrich, A. K.: The life histories of plankton animals and seasonal cycles of plankton communities in the oceans. J. Cons. Int. Explor. Mer 27, 15–24 (1962)Google Scholar
  45. Hellebust, J. A. and J. Lewin: Heterotrophic nutrition. In: The biology of diatoms, pp 169–197. Ed. by D. Werner. Oxford: Blackwell Scientific Publications 1977Google Scholar
  46. Hensen, V.: Über die Bestimmung des Planktons oder des im Meere treibenden Materials an Pflanzen und Tieren. Ber. Komm. wiss. Unters. dt. Meere 5, 1–108 (1887)Google Scholar
  47. Honjo, S.: Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, N.Y. 218, 883–884 (1982)Google Scholar
  48. Honjo, S. and M. R. Roman: Marine copepod fecal pellets: production, preservation, and sedimentation. J. mar. Res. 36, 45–57 (1978)Google Scholar
  49. Honjo, S., S. J. Manganini and J. J. Cole: Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res. 29, 609–625 (1982)Google Scholar
  50. Hurd, D. C., C. Wenkam, H. S. Pankratz and J. Fugate: Variable porosity in siliceous skeletons: determination and importance. Science, N.Y. 203, 1340–1343 (1979)Google Scholar
  51. Hustedt, F.: Die Kieselalgen. In: Rabenhorst's Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 7, 845 pp. Leipzig: Akademische Verlagsgemeinschaft 1930Google Scholar
  52. Hutchinson, G. E.: A treatise on limnology, Vol. 2 1115 pp. New York: John Wiley and Sons 1967Google Scholar
  53. Imber, B. E., M. G. Robinson and F. Pollehne: Complexation by diatom exudates in culture and in the field. In: Complexation of trace metals in natural waters, pp 429–440. Ed. by C. J. N. Kramer and J. C. Duinker. De Haag: Nijhoff-Junk Publ. 1984Google Scholar
  54. Iseki, K.: Particulate organic matter transport to the deep sea by salp fecal pellets. Mar. Ecol. Prog. Ser 5, 55–60 (1981)Google Scholar
  55. Jewson, D. H., B. H. Rippey and W. K. Gilmore: Loss rates from sedimentation, parasitism and grazing during the growth, nutrient limitation and dormancy of a diatom crop. Limnol. Oceanogr. 26, 1045–1056 (1981)Google Scholar
  56. Johannes, R. E. and M. Satomi: Composition and nutritive value of fecal pellets of a marine crustacean. Limnol. Oceanogr. 11, 191–197 (1966)Google Scholar
  57. Kilham, P. and S. S. Kilham: The evolutionary ecology of phytoplankton. In: The physiological ecology of phytoplankton, pp 571–597. Ed. by I. Morris. Oxford: Blackwell Scientific Publications 1980Google Scholar
  58. Kimball, J. F. Jr., E. F. Corcoran and E. J. F. Wood: Chlorophyll containing microorganisms in the aphotic zone of the oceans. Bull. mar. Sci. 13, 574–577 (1963)Google Scholar
  59. Knauer, G. A., J. H. Martin and K. W. Bruland: Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific. Deep-Sea Res. 26, 97–108 (1979)Google Scholar
  60. Krause, M.: Vertical distribution of faecal pellets during FLEX '76. Helgoländer Meeresunters. 34, 313–327 (1981)Google Scholar
  61. Lännergren, C.: Buoyancy of natural populations of marine plankton. Mar. Biol. 54, 1–10 (1979)Google Scholar
  62. Lewin, J., J. R. Colvin, K. L. McDonald: Blooms of surf-zone diatoms along the coast of the Olympic Peninsula. XXII. The clay coat of Chaetoceros armatum T. West. Bot. mar. 23, 333–341 (1980)Google Scholar
  63. Lund, J. W.: An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. subarctica in an English lake. J. Ecol. 59, 521–533 (1971)Google Scholar
  64. Lutter, S.: Quantitative Untersuchungen zur Sedimentation der Frühjahrsblüte im Blasfjord, Nordnorwegen, 75 pp. Ms. thesis, Kiel University 1984Google Scholar
  65. Madin, L. P.: Production, composition and sedimentation of salp fecal pellets in oceanic waters. Mar. Biol. 67, 39–45 (1982)Google Scholar
  66. Malone, T. C.: Algal size. In: The physiological ecology of phytoplankton, pp 433–463. Ed. by I. Morris. Oxford: Blackwell Scientific Publications 1980Google Scholar
  67. Malone, T. C., P. G. Falkowski, T. S. Hopkins, G. T. Rowe and T. E. Whitledge: Mesoscale response of diatom populations to a wind event in the plume of the Hudson River. Deep-Sea Res. 30, 149–170 (1983)Google Scholar
  68. Margalef, R.: Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1, 493–509 (1978)Google Scholar
  69. McCave, I. N.: Vertical flux of particles in the ocean. Deep-Sea Res. 22, 491–502 (1975)Google Scholar
  70. Müller, P. J. and E. Suess: Productivity, sedimentation rate and sedimentary organic matter in the oceans. I. Organic carbon preservation. Deep-Sea Res. 26, 1347–1362 (1979)Google Scholar
  71. Munk, W. H. and G. A. Riley: Absorption of nutrients by aquatic plants. J. mar. Res. 11, 215–240 (1952)Google Scholar
  72. Nöthig, E.-M.: Experimentelle Untersuchungen an natürlichen Planktonpopulationen unter besonderer Berücksichtigung heterotropher Organismen, 105 pp. Ms. thesis, Kiel Univ. 1984Google Scholar
  73. Omori, M. and W. M. Hamner: Patchy distribution of zooplankton. Behavior, population assessment and sampling problems. Mar. Biol. 72, 193–200 (1982)Google Scholar
  74. Paffenhöfer, G. A. and S. C. Knowles: Ecological implications of fecal pellet size, production and consumption by copepods. J. mar. Res. 37, 35–49 (1979)Google Scholar
  75. Parsons, T. R.: Some ecological, experimental, and evolutionary aspects of the upwelling ecosystem. J. S. Afr. Sci. 75, 536–540 (1979)Google Scholar
  76. Peinert, R., A. Saure, P. Stegmann, C. Stienen, H. Haardt and V. Smetacek: Dynamics of primary production and sedimentation in a coastal ecosystem. Neth. J. Sea Res. 16, 276–289 (1982)Google Scholar
  77. Platt, T. and D. V. Subba Rao: Primary production measurements of a natural plankton bloom. J. Fish. Res. Bd Can. 27, 887–898 (1970)Google Scholar
  78. Platt, T., K. H. Mann and R. E. Ulanowicz (Editors). Mathematical models in biological oceanography, 156 pp. Paris: The Unesco Press 1981Google Scholar
  79. Platt, T., D. V. Subba Rao, J. C. Smith, W. K. Li, B. Irwin, E. P. W. Horne and D. D. Sameoto: Photosynthetically-competent phytoplankton from the aphotic zone of the deep ocean. Mar. Ecol. Prog. Ser. 10, 105–110 (1983)Google Scholar
  80. Pomeroy, L. R. and D. Deibel: Aggregation of organic matter by pelagic tunicates. Limnol. Oceanogr. 24, 643–652 (1980)Google Scholar
  81. Provasoli, L.: Recent progress, an overview. In: Toxic dinoflagellate blooms, pp 1–14. Ed. by D. L. Taylor and H. H. Seliger. North Holland, Elsevier 1979Google Scholar
  82. Reynolds, C. S., A. R. Morison and C. Butterwick: The sedimentary flux of phytoplankton in the south basin of Windermere. Limnol. Oceanogr. 27, 1162–1175 (1982)Google Scholar
  83. Riley, G. A.: Organic aggregates in seawater and the dynamics of their formation and utilization. Limnol. Oceanogr. 8, 372–381 (1963)Google Scholar
  84. Rowe, G. T. and W. D. Gardner: Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps. L. mar. Res. 37, 581–600 (1979)Google Scholar
  85. Sandgren, C. D.: Survival strategies of chrysophycean flagellates: reproduction and the formation of resistant resting cysts. In: Survival strategies of the algae, pp 23–48. Ed. by G. A. Fryxell. Cambridge: Cambridge University Press 1983Google Scholar
  86. Schnack, S. B.: On the feeding of copepods on Thalassiosira partheneia from the Northwest African upwelling area. Mar. Ecol. Prog. Ser. 11, 49–53 (1983)Google Scholar
  87. Schnack, S. B., V. Smetacek, B. v. Bodungen, P. Stegmann: Utilisation of phytoplankton by copepods in Antarctic waters during spring. In: Proc. 18th Eur. Mar. Biol. Symp. Ed. by J. Gray and M. E. Christiansen. New York: John Wiley (in press)Google Scholar
  88. Scharder, H. J.: Fecal pellets: role in sedimentation of pelagic diatoms. Science, N.Y. 174, 55–77 (1971)Google Scholar
  89. Shanks, A. L. and J. D. Trent: Marine snow: sinking rates and potential role in vertical flux. Deep-Sea Res. 27A, 137–143 (1980)Google Scholar
  90. Silver, M. W. and A. L. Alldredge: Bathypelagic marine snow: deep sea algal and detrital community. J. mar. Res. 39, 501–530 (1981)Google Scholar
  91. Silver, M. W. and K. W. Bruland: Differential feeding and fecal pellet composition of salps and pteropods, and the possible origin of the deep-water flora and olive-green “cells”. Mar. Biol. 62, 263–273 (1981)Google Scholar
  92. Silver, M. W., A. L. Shanks and J. D. Trent: Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science, N.Y. 201, 371–373 (1978)Google Scholar
  93. Small, L. F., S. W. Fowler and M. Y. Ünlü: Sinking rates of natural copepod fecal pellets. Mar. Biol. 51, 233–241 (1979)Google Scholar
  94. Smayda, T. J.: The suspension and sinking of phytoplankton in the sea. Oceanogr. mar. Biol. A. Rev. 8, 353–414 (1970)Google Scholar
  95. Smayda, T. J.: Normal and accelerated sinking of phytoplankton in the sea. Mar. Geol. 11, 105–122 (1971)Google Scholar
  96. Smayda, T. J.: Phytoplankton species succession. In: The physiological ecology of phytoplankton, pp 493–570. Ed. by I. Morris. Oxford: Blackwell Scientific Publications 1980Google Scholar
  97. Smayda, T. J. and B. Mitchell-Innes: Dark survival of autotrophic planktonic marine diatoms. Mar. Biol. 25, 195–202 (1974)Google Scholar
  98. Smetacek, V.: Annual cycle of sedimentation in relation to plankton ecology in Western Kiel Bight. Ophelia, Suppl. 1, 65–76 (1980a)Google Scholar
  99. Smetacek, V.: Zooplankton standing stock, copepod faecal pellets and particulate detritus in Kiel Bight. Estuar. cstl Shelf Sci. 11, 477–490 (1980b)Google Scholar
  100. Smetacek, V.: The supply of food to the benthos. In: Flows of energy and materials in marine ecosystems: Theory and practice, pp 517–548. Ed. by M. J. Fasham. New York: Plenum Press 1984Google Scholar
  101. Smetacek V., K. v. Bröckel, B. Zeitzschel and W. Zenk: Sedimentation of particulate matter during a phytoplankton spring bloom in relation to the hydrographical regime. Mar. Biol. 47, 211–226 (1978)Google Scholar
  102. Smetacek, V., B. v. Bodungen, E.-M. Nöthig and U. Bathmann: Sedimentation of planktonic diatoms in the Antarctic: evidence of a mechanism for accelerating sinking rates. (Submitted)Google Scholar
  103. Sournia, A.: Form and function in marine phytoplankton. Biol Rev. 57, 347–394 (1982)Google Scholar
  104. Staresinic, N., J. Farrington, R. E. Gagosian, C. H. Clifford and E. M. Hurlburt: Downward transport of particulate matter in the Peru coastal upwelling: role of the southern anchoveta Engraulis ringens. In: Coastal upwelling: its sediment record, Part A, pp 225–240. Ed. by E. Suess and J. Thiede. New York: Plenum Press 1983Google Scholar
  105. Steele, J. H.: The structure of marine ecosystems, 128 pp. Cambridge, Mass.: Harvard University Press 1974Google Scholar
  106. Turner, J. T. and J. G. Ferrante: Zooplankton fecal pellets in aquatic ecosystems. BioScience 29, 670–675 (1979)Google Scholar
  107. Urrere, M. A. and G. A. Knauer: Zooplankton faecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment. J. Plankt. Res. 3, 369–387 (1981)Google Scholar
  108. Vincent, E. and W. H. Berger: Planktonic Foraminifera and their use in paleoceanography. In: The sea, Vol. 7, pp 1025–1119. Ed. by C. Emiliani. New York: John Wiley and Sons 1981Google Scholar
  109. Walsby, A. E. and C. S. Reynolds: Sinking and floating. In: The physiological ecology of phytoplankton, pp 371–412. Ed. by I. Morris. Oxford: Blackwell Scientific Publications 1980Google Scholar
  110. Walsh, J. J.: Death in the sea: enigmatic phytoplankton losses. Progr. Oceanogr. 12, 1–86 (1983)Google Scholar
  111. Wassmann, P.: Sedimentation of organic and inorganic particulate material in Lindaspollene, a stratified, land-locked fjord in western Norway. Mar. Ecol. Prog. Ser. 13, 237–248 (1983)Google Scholar
  112. Williams, W. T., J. S. Bunt, R. D. John and D. J. Abel: The community concept and the phytoplankton. Mar. Ecol. Prog. Ser. 6, 115–121 (1981)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • V. S. Smetacek
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKiel 1Federal Republic of Germany

Personalised recommendations