, Volume 160, Issue 1, pp 12–20 | Cite as

The role of calcium ions in phytochrome-mediated germination of spores of Onoclea sensibilis L.

  • Randy Wayne
  • Peter K. Hepler


Phytochrome is confirmed to be the photoreceptor pigment in the germination response of Onoclea sensibilis L. by demonstrating red-far-red (R-FR) photoreversibility. External Ca2+ is required for this response with a threshold at a submicromolar concentration. Ethylene glycol-bis(β-amino-ethyl ether)-N,N,N′,N′-tetraacetic acid, La3+ and Co2+ reversibly inhibit germination. Lanthanum only inhibits germination when applied before or during irradiation, indicating that the external Ca2+ requirement is transient, although in the absence of Ca2+ the R-stimulated system remains maximally poised to accept the ion for over 4 h after irradiation. The ability to respond to Ca2+ 4.1 h after R-irradiation is not reversed by FR-irradiation, indicating that Ca2+ transport has been uncoupled from phytochrome. Barium and Sr2+, but not Mg2+ can substitute for Ca2+. Artificially increasing the concentration of intracellular free Ca2+ with the ionophore A 23187 stimulates germination in the dark. The Ca2+-calmodulin antagonists, trifluoperizine and chlorpromazine, reversibly inhibit germination. Calcium is required in phytochrome-mediated fern spore germination; it may be acting as a second messenger.

Key words

Calcium Calmodulin Germination (spore) Onoclea Phytochrome and Ca2+ Pteridophyta 



ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid


far-red light


fed light


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.M., Cormier, M.J. (1978) Calcium-dependent regulator of NAD kinase in higher plants. Biochem. Biophys. Res. Commun. 84, 595–602Google Scholar
  2. Campbell, N.A., Thomson, W.W. (1977) Effects of lanthanum and ethylenediaminetetraacetate on leaf movements of Mimosa. Plant Physiol. 60, 635–639Google Scholar
  3. Dieter, P., Marmé, D. (1981a) Fat-red light irradiation of intact corn seedlings affects mitochondrial and calmodulin-dependent microsomal Ca2+ transport. Biochem. Biophys. Res. Commun. 101, 749–755Google Scholar
  4. Dieter, P., Marmé, D. (1981b) A Calmodulin-dependent, microsomal ATPase from corn (Zea mays L.). FEBS Lett. 125, 245–248Google Scholar
  5. Dreyer, E.M., Weisenseel, M.H. (1979) Phytochrome-mediated uptake of calcium in Mougeotia cells. Planta 146, 31–39Google Scholar
  6. Edwards, M.E., Miller, J.H. (1972) Growth regulation by ethylene in fern gametophytes. III. Inhibition of spore germination. Am. J. Bot. 59, 458–465Google Scholar
  7. Epel, D. (1964) A primary metabolic change of fertilization: interconversion of pyridine nucleotides. Biochem. Biophys. Res. Commun. 17, 62–68Google Scholar
  8. Etzold, H. (1965) Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris felix mas (L.) Schott. Planta 64, 254–280Google Scholar
  9. Georgevich, G., Roux, S.J. (1982) Permeability and structural changes induced by phytochrome in lipid vesicles. Photochem. Photobiol. 36, 663–671Google Scholar
  10. Hale, C.C., II., Roux, S.J. (1980) Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol. 65, 658–662Google Scholar
  11. Haupt, W., Mortel, G., Winkelnkemper, I. (1969) Demonstration of different dichroic orientation of phytochrome Pr and Pfr. Planta 88, 183–186Google Scholar
  12. Haupt, W., Weisenseel, M.H. (1976) Physiological evidence and some thoughts on localized responses, intracellular localization and action of phytochrome. In: Light and plant development, pp. 63–74, Smith, H., ed. Butterworths, Boston LondonGoogle Scholar
  13. Huckaby, C.S., Kalantari, K., Miller, J.H. (1982) Inhibition of Onoclea sensibilis spore germination by far-red light and cis-4-cyclohexene-1,2-dicarboximide. Z. Pflanzenphysiol. 105, 375–378Google Scholar
  14. Hughes, A.P. (1965) Phytochrome discussion. In: Recent progress in photobiology (Proc. Int. Congr., Oxford, July, 1964), pp. 219–222, Bowen, E.J., ed. Academic Press, New York LondonGoogle Scholar
  15. Kadota, A., Wada, M., Furuya, M. (1982) Phytochrome-mediated phototropism and different dicroic orientation of Pr and Pfr in protonemata of the fern Adiantum capillus-veneris L. Photochem. Photobiol. 35, 533–536Google Scholar
  16. Kang, B.G., Ray, P.M. (1969) Role of growth regulators in the bean hypocotyl hook opening response. Planta 87, 193–205Google Scholar
  17. Kauss, H. (1981) Sensing of volume changes by Poterioochromonas involves a Ca2+-regulated system which controls activation of isofloridoside-phosphate synthase. Plant Physiol. 68, 420–424Google Scholar
  18. Kretsinger, R.H. (1981) Mechanisms of selective signalling by calcium. Neurosci. Res. Program Bull. 19, 211–328Google Scholar
  19. Lettvin, J.Y., Pickard, W.F., McCulloch, W.S., Pitts, W. (1964) A theory of passive ion flux through axon membranes. Nature (London) 202, 1338–1339Google Scholar
  20. Miller, J.H. (1980) Differences in the apparent permeability of spore walls and prothallial cell walls in Onoclea sensibilis. Am. Fern J. 70, 119–123Google Scholar
  21. Miller, J.H., Vogelmann, Th.C., Bassel, A.R. (1983) Promotion of fern rhizoid elongation by metal ions and the function of the spore coat as an ion reservoir. Plant Physiol. 71, 828–834Google Scholar
  22. Mohr, H. (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Newman, I.A. (1981) Rapid electric responses of oats to phytochrome show membrane processes unrelated to pelletability. Plant Physiol. 68, 1494–1499Google Scholar
  24. Pressman, B.C. (1976) Biological applications of ionophores. Annu. Rev. Biochem. 45, 501–530Google Scholar
  25. Racusen, R.H. (1976) Phytochrome control of electrical potentials and intercellular coupling in oat-coleoptile tissue. Planta 132, 25–29Google Scholar
  26. Raghavan, V. (1980) Cytology, physiology and biochemistry of germination of fern spores. Int. Rev. Cytol. 62, 69–118Google Scholar
  27. Rasmussen, H. (1970) Cell communication, calcium ion, and cyclic adenosine moncphosphate. Science 170, 404–412Google Scholar
  28. Rasmussen, H. (1981) Calcium and cAMP as synarchic messengers. Wiley, New YorkGoogle Scholar
  29. Roux, S.J., McEntire, K., Slocum, R.D., Cedel, T.E., Hale, C.C., II. (1981) Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats. Proc. Natl. Acad. Sci. USA 78, 283–287Google Scholar
  30. Schmidt, J.A., Eckert, R. (1976) Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardii. Nature (London) 262, 713–715Google Scholar
  31. Shimomura, O., Johnson, F.H. (1976) Calcium-triggered luminescence of the photoprotein aequorin. Symp. Soc. Exp. Biol. 30, 41–54Google Scholar
  32. Stockwell, C.R., Miller, J.H. (1974) Regions of cell wall expansion in the protonema of a fern. Am. J. Bot. 61, 375–378Google Scholar
  33. Tanada, T. (1968) Substances essential for a red, far-red light reversible attachment of mung bean root tips to glass. Plant Physiol. 43, 2070–2071Google Scholar
  34. Taylorson, R.B., hendricks, S.B. (1977) Dormancy in seeds. Annu. Rev. Plant Physiol. 28, 331–354Google Scholar
  35. Tezuka, T., Yamamoto, Y. (1969) NAD kinase and phytochrome. Bot. Mag. 82, 130–133Google Scholar
  36. Thomson, W.W., Platt, K.A., Campbell, N. (1973) The use of lanthanum to delineate the apoplastic continuum in plants. Cytobios 8, 57–62Google Scholar
  37. Tominaga, Y., Tazawa, M. (1981) Refersible inhibition of cytoplasmic streaming by intracellular Ca2+ in tonoplast-free cells of Chara australis. Protoplasma 109, 103–111Google Scholar
  38. Towill, L.R., Ikuma, H. (1973) Photocontrol of the germination of Onoclea spores. I. Action spectrum. Plant Physiol. 51, 973–978Google Scholar
  39. Towill, L.R., Ikuma, H. (1975) Photocontrol of the germination of Onoclea spores. II. Analysis of germination processes by means of cycloheximide. Plant Physiol. 55, 803–808Google Scholar
  40. Wayne, R., Hepler, P.K. (1982) The role of Ca2+ in phytochrome-mediated fern spore germination. (Abstr.) Plant Physiol. 69, Suppl., 25Google Scholar
  41. Weisenseel, M.H., Ruppert, H.K. (1977) Phytochrome and calcium ions are involved in light-induced membrane depolarization in Nitella. Planta 137, 225–229Google Scholar
  42. Weisenseel, M.H., Smeibidl, E. (1973) Phytochrome controls the water permeability in Mougeotia. Z. Pflanzenphysiol. 70, 420–431Google Scholar
  43. Weiss, B., Prozialeck, W.C., Wallace, T.L. (1982) Interaction of drugs with calmodulin. Biochem. Pharmacol. 31, 2217–2226Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Randy Wayne
    • 1
  • Peter K. Hepler
    • 1
  1. 1.Department of BotanyUniversity of MassachusettsAmherstUSA

Personalised recommendations