, Volume 171, Issue 4, pp 565–568 | Cite as

Spinach ferredoxin is a calcium-binding protein

  • Barbara Surek
  • Georg Kreimer
  • Michael Melkonian
  • Erwin Latzko
Short Communication


Spinach-leaf ferredoxin was identified as a calcium-binding protein by 45Ca autoradiography on nitrocellulose membranes and with the cationic carbocyanine dye 1-ethyl-2-[3-(1-ethylnaphtho[1,2-d]thiazolin-2-ylidene)-2-methylpropenyl] naphtho[1,2-d]thiazolium bromide (“stains-all”). Binding of 45Ca was observed at pH 6.8 and pH 7.8 and in the presence of 5 mM and 20 mM MgCl2. At the higher MgCl2 concentration the Ca2+-binding capacity is reduced. Only micromolar concentrations of LaCl3, however, are required to achieve a similar effect. Both the oxidized and reduced forms of ferredoxin bind calcium.

Key words

Calcium binding Ferredoxin (Ca2+-binding) Spinacia (Ca2+ binding) “Stains-all” (Ca2+ binding) 



polyacrylamide gel electrophoresis


sodium dodecyl sulfate


1-ethyl-2-[3-(1-ethylnaphtho[1,2-d]thiazolin-2-ylidene)-2-methylpropenyl] naptho[1,2-d]thiazolium bromide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böger, P. (1970) Ferredoxin aus Bumilleriopsis filiformis Vischer. Planta 92, 105–128Google Scholar
  2. Burgess, W.H., Jemiolo, D.K., Kretsinger, R.H. (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim. Biophys. Acta. 623, 257–270Google Scholar
  3. Campbell, K.P., MacLennan, D.H., Jorgensen, A.O. (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin c, and S-100, with the cationic carbocyanine dye “stains-all”. J. Biol. Chem. 258, 11267–11273Google Scholar
  4. Charles, S.A., Halliwell, B. (1981) The role of calcium ions and the thioredoxin system in regulation of spinach chloroplasts fructosebisphosphatase. Cell Calcium 2, 211–224Google Scholar
  5. Evans, C.H. (1983) Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci. 8, 445–449Google Scholar
  6. Green, M.R., Pastewka, J.V. (1975) Identification of sialic acidrich glycoproteins on polyacrylamide gels. Anal. Biochem. 65, 66–72Google Scholar
  7. Green, M.R., Pastewka, J.V., Peacock, A.C. (1973) Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Anal. Biochem. 56, 43–51Google Scholar
  8. Gross, E., Hess, S.C. (1974) Correlation between calcium binding to chloroplast membranes and divalent cation-induced structural changes and changes in chlorophyll a fluorescence. Biochim. Biophys. Acta 339, 334–346Google Scholar
  9. Hawkes, R., Niday, E., Gordon, J. (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem. 119, 142–147Google Scholar
  10. Hertig, C., Wolosiuk, R.A. (1980) A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem. Biophys. Res. Commun. 97, 325–333Google Scholar
  11. Hertig, C., Wolosiuk, R.A. (1983) Studies on the hysteretic properties of chloroplast fructose-1,6-bisphosphatase. J. Biol. Chem. 258, 984–989Google Scholar
  12. Hirasawa, M., Boyer, J.M., Gray, K.A., Davis, D.J., Knaff, D.B. (1986) The interaction of ferredoxin with chloroplast ferredoxin-linked enzymes. Biochim. Biophys. Acta 851, 23–28Google Scholar
  13. Kreimer, G., Surek, B., Heimann, K., Burchert, M., Lukow, L., Holtum, J.A.M., Woodrow, I.E., Melkonian, M., Latzko, E. (1987a) Calcium metabolism in chloroplasts and protoplasts. In: Progress in photosynthesis research, vol. III, pp. 4.345–4.357, Biggins, J., ed. Martinus Nijhoff Publ., Dordrecht Boston LancasterGoogle Scholar
  14. Kreimer, G., Surek, B., Woodrow, I.E., Latzko, E. (1987b) Calcium binding by spinach stromal proteins. Planta 171, 259–265Google Scholar
  15. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685Google Scholar
  16. Maruyama, K., Mikawa, T., Ebashi, S. (1984) Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J. Biochem. 95, 511–519Google Scholar
  17. Petering, D.H., Palmer, G. (1970) Properties of spinach ferredoxin in anaerobic urea solution; a comparison with the native form. Arch. Biochem. Biophys. 141, 456–464Google Scholar
  18. Prochaska, L.J., Gross, E.L. (1975) The effect of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide on calcium binding and associated changes in chloroplast structure and chlorophyll a fluorescence in spinach chloroplasts. Biochim. Biophys. Acta 376, 126–135Google Scholar
  19. Towbin, H., Staehelin, T., Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354Google Scholar
  20. Vieira, B.J., Colvert, K.K., Davis, D.J. (1986) Chemical modification and cross-linking as probes of regions on ferredoxin involved in its interaction with ferredoxin: NADP reductase. Biochim. Biophys. Acta 851, 109–122Google Scholar
  21. Yocum, C.F. (1982) Purification of ferredoxin and plastocyanin. In: Methods in chloroplast molecular biology, pp. 973–981, Edelman, M., Hallick, R.B., Chua, N.-H., eds. Elsevier Biomedical Press, Amsterdam, New York, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Barbara Surek
    • 1
  • Georg Kreimer
    • 1
  • Michael Melkonian
    • 1
  • Erwin Latzko
    • 1
  1. 1.Botanisches Institut der Westfälischen Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations