Marine Biology

, Volume 73, Issue 3, pp 269–283

Meiofauna and the thiobios in the east flower garden brine seep

  • E. N. Powell
  • T. J. Bright
  • A. Woods
  • S. Gittings


Special hydrodynamic-chemical conditions at the East Flower Garden brine seep have provided the opportunity to examine the community structure of the thiobios and the oxybiotic-thiobiotic boundary. The boundary between the thiobios, whose population maxima occur in sulfidedependent chemoclines and which presumably have an ecologic requirement for sulfide, and the oxybios, which occur in oxidized zones above the chemocline, is controlled by sulfide, not oxygen. The boundary, which may not be at zero sulfide, is determined by a time-concentration phenomenon based on a dynamic interplay of sulfide and oxygen supply rates and the biota's sulfide detoxification capabilities. In Gollum's Canyon, where oxygen is plentiful, the boundary is at 10–40 μg-atoms·l-1 sulfide. Total abundances of organisms at thiobiotic stations were comparable to total abundances at oxybiotic stations. Highest thiobiotic abundance was 202 051 organisms per m2; highest oxybiotic abundance was 240 572 organisms per m2. The thiobios is dominated by representatives of the lower Bilateria (viz. Gnathostomulida, Platyhelminthes and Aschelminthes). These groups accounted for 50–80% of all the organisms present in the thiobiotic stations but less than 20% of all organisms in the oxybiotic stations. At two thiobiotic stations, over 50% of all organisms were gnathostomulids. Thiobios included macrofaunal as well as meiofaunal components. Peak abundances of amphipods were associated with the thiobiotic environment.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ankar, S. and B. O. Jansson: Effects of an unusual natural temperature increase on a Baltic soft-bottom community. Mar. Biol. 18, 9–18 (1973)Google Scholar
  2. Berry, W. B. N. and P. Wilde: Progressive ventilation of the oceans — an explanation for the distribution of the lower Paleozoic black shales. Am. J. Sci. 278, 257–275 (1978)Google Scholar
  3. Boaden, P. J. S.: Anaerobiosis, meiofauna and early metazoan evolution. Zool. Scr. 4, 21–24 (1975)Google Scholar
  4. Boaden, P. J. S.: Thiobiotic facts and fancies (aspects of the distribution and evolution of anaerobic meiofauna). Akad. wiss. Lit. Mainz Mikrofauna Meeresbodens 61, 45–63 (1977)Google Scholar
  5. Boaden, P. J. S.: Meiofauna thiobios and “the Arenicola negation”: case not proven. Mar. Biol. 58, 25–29 (1980)Google Scholar
  6. Boaden, P. J. S. and H. M. Platt: Daily migration patterns in an intertidal meiobenthic community. Thalassia Jugosl. 7, 1–12 (1971)Google Scholar
  7. Bright, T. J., E. N. Powell and R. Rezak: Environmental effects of a natural brine seep at the East Flower Garden Bank, north-western Gulf of Mexico. In: Marine environmental pollution 1. Hydrocarbons, pp 291–316. Ed. by R. A. Geyer. New York: Elsevier Scientific Publ. Co. 1980aGoogle Scholar
  8. Bright, T. J., P. A. LaRock, R. D. Lauer and J. M. Brooks: A brine seep at the East Flower Garden Bank, northwestern Gulf of Mexico. Int. Revue gesamt. Hydrobiol. 65, 535–549 (1980b)Google Scholar
  9. Brooks, J. M., T. J. Bright, B. B. Bernard and C. R. Schwab: Chemical aspects of a brine pool at the East Flower Garden Bank, northwestern Gulf of Mexico. Limnol. Oceanogr. 24, 735–745 (1979)Google Scholar
  10. Carpelan, L. H.: Invertebrates in relation to hypersaline habitats. Contrib. mar. Sci. 12, 219–229 (1967)Google Scholar
  11. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch and J. B. Waterbury: Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science (Wash. D.C.) 213, 340–342 (1981)Google Scholar
  12. Cline, J. D.: Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969)Google Scholar
  13. Cline, J. D. and F. A. Richards: Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environ. Sci. Technol. 3, 838–843 (1969)Google Scholar
  14. Cloud, Jr., P. E.: Atinospheric and hydrospheric evolution on the primitive Earth. Science (Wash. D.C.) 160, 729–736 (1968)Google Scholar
  15. Crezee, M.: Solenofilomorphidae (Acoela), major component of a new turbellarian association in the sulfide system. Int. Revue gesamt. Hydrobiol. 61, 105–129 (1976)Google Scholar
  16. Demaison, G. J. and G. T. Moore: Anoxic environments and oil source bed genesis. Am. Assoc. Pet. Geol. Bull. 64, 1179–1209 (1980)Google Scholar
  17. Ehlers, U.: Zur Populationsstruktur interstitieller Typhloplanoida und Dalyellioida (Turbellaria, Neorhabdocoela) Untersuchungen an einem mittellotischen Sandstrand der Nordseeinsel Sylt. Akad. wiss. Lit. Mainz Mikrofauna Meeresbodens 19, 1–105 (1973)Google Scholar
  18. Farris, R. A.: Systematics and ecology of Gnathostomulida from North Carolina and Bermuda, 197 pp. Ph.D. dissertation, University of North Carolina at Chapel Hill 1976Google Scholar
  19. Felbeck, H.: Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science (Wash. D.C.) 213, 336–338 (1981)Google Scholar
  20. Felbeck, H., J. J. Childress and G. N. Somero: Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature (Lond.) 293, 291–292 (1981)Google Scholar
  21. Fenchel, T.: The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfaunal communities with special reference to the ciliated protozoa. Ophelia 6, 1–182 (1969)Google Scholar
  22. Fenchel, T., T. Perry and A. Thane: Anaerobiosis and symbiosis with bacteria in free-living ciliates. J. Protozool. 24, 154–163 (1977)Google Scholar
  23. Fenchel, T. and R. J. Riedl: The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7, 255–268 (1970)Google Scholar
  24. Folk, R. L.: Petrology of sedimentary rocks. Austin, Texas: Hemphill's Drawer M, University Station 1968Google Scholar
  25. Gallardo, V. A.: Large benthic microbial communities in sulphide biota under Peru-Chile subsurface countercurrent. Nature (Lond.) 268, 331–332 (1977)Google Scholar
  26. Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens and R. A. Berner: Sulfate reduction, diffusion and bioturbation in Long Island Sound sediments: report of the FOAM group — FOAM (Friends of Anoxic Mud). Am. J. Sci. 277, 193–237 (1977)Google Scholar
  27. Goldhaber, M. B. and L. R. Kaplan: The sulfur cycle. In: The sea, Vol. 5. Marine chemistry, pp 569–655. Ed. by E. Goldberg. New York: John Wiley and Sons 1974Google Scholar
  28. Hammen, C. S.: Total energy metabolism of marine mollusks in anaerobic and aerobic states. Comp. Biochem. Physiol. A. 67, 617–621 (1980)Google Scholar
  29. Hulings, N. C. and J. S. Gray: Physical factors controlling abundance of meiofauna on tidal and atidal beaches. Mar. Biol. 34, 77–83 (1976)Google Scholar
  30. Ingvorsen, K. and B. B. Jørgensen: Combined measurement of oxygen and sulfide in water samples. Limnol. Oceanogr. 24 390–393 (1979)Google Scholar
  31. Jacubowa, L. and E. Malm: Die Beziehungen einiger Benthos-Formen des Schwarzen Meeres zum Medium. Biol. Zentralbl. 51, 105–116 (1931)Google Scholar
  32. Jørgensen, B. B.: Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 34, 68–76 (1980)Google Scholar
  33. Jørgensen, B. B.: Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface communities. Phil. Trans. R. Soc. Lond. B 298, 543–561 (1982)Google Scholar
  34. Kinne, O.: The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature salinity combinations. Oceanogr. Mar. Biol. Annu. Rev. 2, 281–339 (1964)Google Scholar
  35. McGrail, D. and D. Horne: Part B: water and sediment dynamics. In: Northern Gulf of Mexico topographic features study — final report Vol. 3 Chap. X Flower Garden Banks, pp 9–45 U.S. Dept. Int. Bur. Land Management Outer Continental Shelf Office, Contract No. AA551-CT8-35 1981Google Scholar
  36. McNulty, J. K., R. C. Work and H. B. Moore: Some relationships between the infauna of the level bottom and the sediment in south Florida. Bull. mar. Sci. Gulf Caribb. 12, 322–332 (1962)Google Scholar
  37. Müller, U. and P. Ax: Gnathostomulida von der Nordseeinsel Sylt mit Beobachtungen zur Lebensweise und Entwicklung von Gnathostomula paradoxa Ax. Akad. wiss. Lit. Mainz Mikrofauna Meeresbodens. 9, 1–41 (1971)Google Scholar
  38. O'Brien, D. J. and F. B. Birkner: Kinetics of oxygenation of reduced sulfur species in aqueous solution. Environ. Sci. Technol. 11, 1114–1120 (1977)Google Scholar
  39. Oseid, D. M. and L. L. Smith Jr.: Factors influencing acute toxicity estimates of hydrogen sulfide to freshwater invertebrates. Water Res. 8, 739–746 (1974a)Google Scholar
  40. Oseid, D. M. and L. L. Smith Jr.: Chronic toxicity of hydrogen sulfide to Gammarus pseudolimnaeus. Trans. Am. Fish. Soc. 103, 819–822 (1974b)Google Scholar
  41. Ott, J. A.: Determination of fauna boundaries of nematodes in an intertidal sand flat. Int. Revue gesamt. Hydrobiol. 57, 645–663 (1972)Google Scholar
  42. Pionetti, J. and A. Toulmond: Tide-related changes of volatile fatty acids in the blood of the lugworm Arenicola marina (L.). Can J. Zool. 58, 1723–1727 (1980)Google Scholar
  43. Pollock, L. W.: Ecology of intertidal meiobenthos. Smith. Contrib. Zool. 76, 141–148 (1971)Google Scholar
  44. Powell, E. N. and T. J. Bright: A thiobios does exist — gnathostomulid domination of the canyon community at the East Flower Garden brine seep. Int. Revue gesamt. Hydrobiol. 66, 675–683 (1981)Google Scholar
  45. Powell, E. N., M. A. Crenshaw and R. M. Rieger: Adaptations to sulfide in the meiofauna of the sulfide system 1. 35S-sulfide accumulation and the presence of a sulfide detoxification system. J. exp. mar. Biol. Ecol. 37, 57–76 (1979)Google Scholar
  46. Powell, E. N., M. A. Crenshaw and R. M. Rieger: Adaptations to sulfide in sulfide-system meiofauna. Endproducts of sulfide detoxification in three turbellarians and a gastrotrich. Mar. Ecol. Prog. Ser. 2, 169–177 (1980)Google Scholar
  47. Reimers, T.: Anoxische Lebensräume. Struktur und Entwicklung der Mikrobiozönose an der Grenzfläche Meer/Meeresboden, 134pp. Ph.D. thesis. Christian-Albrechts-Universität, Kiel 1977Google Scholar
  48. Reise, K.: Gnathostomulida abundant alongside polychaete burrows. Mar. Ecol. Prog. Ser. 6, 329–333 (1981a)Google Scholar
  49. Reise, K.: High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgol. wiss. Meeresunters. 34, 413–425 (1981b)Google Scholar
  50. Reise, K. and P. Ax: A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Mar. Biol. 54, 225–237 (1979)Google Scholar
  51. Reise, K. and P. Ax: Statement on the thiobios — hypothesis. Mar. Biol. 58, 31–32 (1980)Google Scholar
  52. Revsbech, N. P., B. B. Jørgensen and T. H. Blackburn: Oxygen in the sea bottom measured with a microelectrode. Science (Wash. D.C.) 207, 1355–1356 (1980a)Google Scholar
  53. Revsbech, N. P., B. B. Jørgensen, T. H. Blackburn and J. P. Lomholt: Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25, 403–411 (1980b)Google Scholar
  54. Rezak, R. and T. J. Bright: Seafloor instability at East Flower Garden Bank, northwest Gulf of Mexico. Geo. mar. Lett. 1, 97–103 (1981)Google Scholar
  55. Rhoads, D. V. and J. W. Morse: Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4, 413–428 (1971)Google Scholar
  56. Riedl, R. J. M.: On Labidognathia longicollis, nov. gen., nov. spec., from the west Atlantic coast (Gnathostomulida). Int. Revue gesamt Hydrobiol. 55, 227–244 (1970a)Google Scholar
  57. Riedl, R. J. M.: Samaeognathia, a new genus of Gnathostomulida from the North American coast. Int. Revue gesamt. Hydrobiol. 55, 359–370 (1970b)Google Scholar
  58. Rieger, R. M.: Monociliated epidermal cells in Gastrotricha: significance for concepts of early metazoan evolution. Z. Zool. Systematik Evolutionsforsh. 14, 198–226 (1976)Google Scholar
  59. Rieger, R. M. and M. Mainitz: Comparative fine structure study of the body wall in Gnathostomulida and their phylogenetic position between Platyhelminthes and Aschelminthes. Z. Zool. Systematik Evolutionsforsh. 15, 9–34 (1977)Google Scholar
  60. Rieger, R. M. and G. E. Rieger: Fine structure of the archiannelid cuticle and remarks on the evolution of the cuticle within the Spiralia. Acta Zool. (Stockh.) 57, 53–68 (1976)Google Scholar
  61. Rieger, R. M. and E. Ruppert: Resin embedments of quantitative meiofauna samples for ecological and structural studies — description and application. Mar. Biol. 46, 223–235 (1978)Google Scholar
  62. Rosenberg, R.: Benthic macrofaunal dynamics, production, and dispersion in an oxygen-deficient estuary of west Sweden. J. exp. mar. Biol. Ecol. 26, 107–133 (1977)Google Scholar
  63. Salvini-Plawen, L.: On the origin and evolution of the lower Metazoa. Z. Zool. Systematik Evolutionsforsh. 16, 40–88 (1978)Google Scholar
  64. Sterrer, W. and R. Rieger: Retronectidae — a new cosmopolitan marine family of Catenulida (Turbellaria). In: The biology of the Turbellaria, pp. 63–92. Ed. by N. Riser and M. Morse. New York: McGraw-Hill Book Co. 1974Google Scholar
  65. Strickland, J. D. H. and T. R. Parsons: A practical handbook of seawater analysis. 2nd edition. Bull. Fish. Res. Bd Can. 167, 1–310 (1972)Google Scholar
  66. Theede, H., A. Ponat, K. Hiroki and C. Schlieper: Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulfide. Mar. Biol. 2, 325–337 (1969)Google Scholar
  67. von Brand, T.: Occurrence of anaerobiosis among invertebrates. Biodynamica 4, 1–328 (1944)Google Scholar
  68. Warren, L. M. and R. P. Dales: Glucose degradation in the polychaete annelid Owenia fusiformis Delle Chiaje under anaerobic conditions. Comp. Biochem. Physiol. B. 65, 443–445 (1980)Google Scholar
  69. Wieser, W.: The meiofauna as a tool in the study of habitat heterogeneity: ecophysiological aspects. A review. Cah. Biol. mar. 16, 647–670 (1975)Google Scholar
  70. Wieser, W. and J. Kanwisher: Respiration and anaerobic survival in some sea weed-inhabiting invertebrates. Biol. Bull. mar. biol. Lab., Wood's Hole 117, 594–600 (1959)Google Scholar
  71. Wieser, W., J. Ott, F. Schiemer and E. Gnaiger: An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Mar. Biol. 26, 235–248 (1974)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • E. N. Powell
    • 1
  • T. J. Bright
    • 1
  • A. Woods
    • 1
  • S. Gittings
    • 1
  1. 1.Department of OceanographyTexas A&M UniversityCollege StationUSA

Personalised recommendations