Advertisement

Planta

, Volume 177, Issue 1, pp 98–107 | Cite as

Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris L.

  • Thomas Hartmann
  • Adelheid Ehmke
  • Udo Eilert
  • Kirsten von Borstel
  • Claudine Theuring
Article

Abstract

14C-Labelled alkaloid precursors (arginine, putrescine, spermidine) fed to Senecio vulgaris plants via the root system were rapidly taken up and efficiently incorporated into the pyrrolizidine alkaloid senecionine N-oxide (sen-Nox) with total incorporations of 3–6%. Considerable amounts of labelled sen-Nox were translocated into the shoot and were directed mainly into the inflorescences, the major sites of pyrrolizidine-alkaloid accumulation. Detached shoots of S. vulgaris were unable to synthesize pyrrolizidine alkaloids, indicating that the roots are the site of their biosynthesis. Further evidence was obtained from studies with in-vitro systems established from S. vulgaris: root cultures were found to synthesize pyrrolizidine alkaloids but not cell-suspension cultures, tumor cultures or shoot-like teratomas obtained by transformation with Agrobacterium tumefaciens. Studies on transport of [14C]sen-Nox, which was fed either to detached shoots or to the root system of intact plants, indicate that the alkaloid N-oxide does not simply follow the transpiration stream but is specifically channelled to the target tissues such as epidermal stem tissue and flower heads. Exogenously applied [14C]senecionine is rapidly N-oxidized. If the phloem path along the stem is blocked by a “steam girdle” translocation of labelled sen-Nox is blocked as well. Root-derived sen-Nox accumulated below the girdle and only trace amounts were found in the tissues above. It is most likely that the root-to-shoot transport of sen-Nox occurs mainly if not exclusively via the phloem. In accordance with previous studies the polar, salt-like N-oxides, which are often considered to be artifacts, were found to be the real products of pyrrolizidine-alkaloid biosynthesis as well as the physiological forms for long-distance transport, tissue-specific distribution and cellular accumulation.

Key words

Alkaloid N-oxide Alkaloid synthesis and transport Pyrrolizidine alkaloids Phloem transport (alkaloids) Root (alkaloid synthesis) Senecio Transport (alkaloids) 

Abbreviations

FW

fresh weight

sen

senecionine

sen-Nox

senecionine N-oxide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birecka, H., Birecki, M., Frohlich, M.W. (1987) Evidence for arginine as endogenous precursor of necines in Heliotropium. Plant Physiol. 84, 42–46Google Scholar
  2. Birecka, H., Birecki, M., Cohen, E.J., Bitonti, A.J., McCann, P.P. (1988) Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in Senecio and Crotalaria. Plant Physiol. 86, 224–230Google Scholar
  3. Birecka, H., Catalfamo, J.L. (1982) Incorporation of assimilated carbon into aminoalcohols of Heliotropium spathulathum. Phytochemistry 21, 2645–2651Google Scholar
  4. Cahill, R., Crout, D.H.G., Mitchell, M.B., Müller, U.S. (1980) Isoleucine biosynthesis and metabolism: stereochemistry of the formation of L-isoleucine and of its conversion into senecic and isatinic acid in Senecio species. J. Chem. Soc. Chem. Commun. 419–421Google Scholar
  5. Craig, J.C., Purushothaman, K.K. (1970) An improved preparation of tertiary amine N-oxides. J. Org. Chem. 35, 1721–1722Google Scholar
  6. Crout, D.H.G., Brenn, M.H., Imaseki, H., Geissman, T.A. (1966) Pyrrolizidine alkaloids. The biosynthesis of seneciphyllic acid. Phytochemistry 5, 1–21Google Scholar
  7. Dreyer, D.L., Jones, K.C., Molyneux, R.J. (1985) Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of the indolizidine alkaloid swainsonine. J. Chem. Ecol. 11, 1045–1051Google Scholar
  8. Ehmke, A., von Borstel, K., Hartmann, T. (1987) Specific uptake of the N-oxides of pyrrolizidine alkaloids by cells, protoplasts and vacuoles from Senecio cell cultures. In: Plant vacuoles, their importance in solute compartmentation in cells and their application in plant biotechnology, pp. 301–304, Marin, B., ed., Plenum Press, New YorkGoogle Scholar
  9. Ehmke, A., von Borstel, K., Hartmann, T. (1988) Alkaloid N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris. Planta 176, 83–90Google Scholar
  10. Eilert, U., DeLuca, V., Kurz, W.G.W., Constabel, F. (1987) Alkaloid formation by habituated and tumorous cell suspension cultures of Catharanthus roseus. Plant Cell Rep. 6, 271–274Google Scholar
  11. Errera, L. (1906) Some general results on the localisation of alkaloids in plants. Recueil de l'Institut Bot., Univ. Bruxelles, T. II, 185–187Google Scholar
  12. Gamborg, O.L., Miller, R.A., Ojima, K. (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158Google Scholar
  13. Grue-Sorensen, G., Spenser, I.D. (1983) Deuterium nuclear magnetic resonance spectroscopy as a probe of the stereochemistry of biosynthetic reactions: The biosynthesis of retronecine. J. Am. Chem. Soc. 105, 7401–7404Google Scholar
  14. Hartmann, T. (1988) Quinolizidines and pyrrolizidines. In: Cell culture and somatic cell genetics of plants, vol. 5: Cell cultures in phytochemistry, pp. 277–288, Constabel, F., Vasil, I.K., eds. Academic Press, New YorkGoogle Scholar
  15. Hartmann, T., Sander, H., Adolph, R., Toppel, G. (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures of Senecio vulgaris. Planta 175, 82–90Google Scholar
  16. Hartmann, T., Toppel, G. (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26, 1639–1643Google Scholar
  17. Hartmann, T., Zimmer, M. (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J. Plant Physiol. 122, 67–80Google Scholar
  18. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231Google Scholar
  19. Khan, H.A., Robins, D.J. (1985) Pyrrolizidine alkaloid biosynthesis. Synthesis of 14C-labelled homospermidines and their incorporation into retrorsine. J. Chem. Soc. Perkin Trans. I 819–824Google Scholar
  20. Molisch, H. (1923) Mikrochemie der Pflanze, 3nd edn. G. Fischer, JenaGoogle Scholar
  21. Mothes, K., Romeike, A. (1958) Die Alkaloide. In: Handbuch der Pflanzenphysiologie, vol. VIII: Der Stickstoff-Umsatz, pp. 989–1049, Ruhland, W., ed. Springer, BerlinGoogle Scholar
  22. Mothes, K., Schütte, H.R., eds. (1969) Biosynthese der Alkaloide. VEB Dtsch. Verlag der Wissenschaft, BerlinGoogle Scholar
  23. Mothes, K., Schütte, H.R., Luckner, M., eds. (1985) Biochemistry of alkaloids, VCH, WeinheimGoogle Scholar
  24. Nowacki, E., Byerrum, R.U. (1962) A study on the biosynthesis of the Crotalaria alkaloids. Life Sci. 5, 157–161Google Scholar
  25. Ondrej, M., Matousek, J., Vlasak, J. (1987) Differentiation of transformed plants from tumors induced by Agrobacterium rubi ATCC 13335. J. Plant Physiol. 126, 397–405Google Scholar
  26. Pate, J.S. (1986) Xylem-to-phloem transfer-vital component of the nitrogen-partitioning system of a nodulated legume. In: Phloem transport, pp. 445–462, Cronshaw, J., Lucas, W.J., Giaquinta, R.T., eds. A.L. Liss, New YorkGoogle Scholar
  27. Phillipson, J.D., Handa, S.S. (1979) Alkaloid N-oxides. A review of recent developments. Lloydia 41, 385–431Google Scholar
  28. Pieters, L.A.C., Vlietinck, A.J. (1985) Quantitative 1H fourier transform nuclear magnetic resonance spectroscopic analysis of mictures of pyrrolizidine alkaloids from Senecio vulgaris. Fresenius Z. Anal. Chem. 321, 355–358Google Scholar
  29. Rana, J., Robins, D.J. (1983) Pyrrolizidine alkaloid biosynthesis: incorporation of 2H-labelled putrescine into retrosine. J. Chem. Soc. Chem. Commun. 1222–1224Google Scholar
  30. Stahl, E. (1888) Pflanzen und Schnecken. Biologische Studie über Schutzmittel der Pflanzen gegen Schneckenfraß. Jena Z. Naturwiss. 22, 557–684Google Scholar
  31. Teuscher, E., Lindequist, U. (1987) Biogene Gifte. G. Fischer, Stuttgart New YorkGoogle Scholar
  32. Toppel, G., Witte, L., Hartmann, T. (1989) N-Oxidation and degradation of pyrrolizidine alkaloids during germination of Crotalaria scassellatii. Phytochemistry (in press)Google Scholar
  33. Toppel, G., Witte, L., Riebesehl, B., von Borstel, K., Hartmann, T. (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producing Senecio species. Plant Cell Rep. 6, 466–469Google Scholar
  34. Tunmann, O. (1913) Pflanzenmikrochemie. Ein Hilfsbuch beim mikrochemischen Studium pflanzlicher Objekte. Borntraeger, BerlinGoogle Scholar
  35. van Bel, A.J.E. (1984) Quantification of the xylem-to-phloem transfer of amino acids by use of inuline [14C]carboxylic acid as xylem transport marker. Plant Sci. Lett. 35, 81–85Google Scholar
  36. von Borstel, K., Hartmann, T. (1986) Selective uptake of pyrrolizidine N-oxides by cell suspension cultures from pyrrolizidine alkaloid producing plants. Plant Cell Rep. 5, 39–42Google Scholar
  37. Wagner, J., Danzin, C., Mamont, P. (1982) Reversed-phase ionpair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J. Chromatogr. 227, 349–368Google Scholar
  38. Wink, M. (1986) Storage of quinolizidine alkaloids in epidermal tissues. Z. Naturforsch. 41c, 375–380Google Scholar
  39. Wink, M., Hartmann, T. (1981) Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Z. Pflanzenphysiol. 102, 337–344Google Scholar
  40. Wink, M., Hartmann, T. (1982) Localization of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllus. Plant Physiol. 70, 74–77Google Scholar
  41. Wink, M., Heinen, H.J., Vogt, H., Schiebel, H.M. (1984) Cellular localization of quinolizidine alkaloids by laser desorption mass spectrometry (LAMMA 1000). Plant Cell Rep. 3, 230–233Google Scholar
  42. Wink, M., Witte, L. (1984) Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruits of Lupinus albus L. Planta 161, 519–524Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Thomas Hartmann
    • 1
  • Adelheid Ehmke
    • 1
  • Udo Eilert
    • 1
  • Kirsten von Borstel
    • 1
  • Claudine Theuring
    • 1
  1. 1.Institut für Pharmazeutische Biologie der Technischen Universität BraunschweigBraunschweigFederal Republic of Germany

Personalised recommendations