, Volume 169, Issue 3, pp 304–312

Analysis of storage proteins in normal and aborted seeds from embryo-lethal mutants of Arabidopsis thaliana

  • J. D. Heath
  • R. Weldon
  • C. Monnot
  • D. W. Meinke


The major storage proteins isolated from wild-type seeds of Arabidopsis thaliana (L.) Heynh., strain “Columbia”, were studied by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both the hypocotyl and cotyledons of mature embryos contained abundant 12 S (cruciferin) and 2 S (arabin) proteins that appeared similar in size and subunit composition to the cruciferin (12 S) and napin (1.7 S) seed-storage proteins of Brassica napus. The 12 S protein from Arabidopsis was resolved by SDS-PAGE into two groups of subunits with approximate relative molecular weights of 22–23 kDa (kilodalton) and 30–34 kDa. These polypeptides accumulated late in embryo development, disappeared early in germination, and were not detected in other vegetative or reproductive tissues. Accumulation of the 12 S proteins in aborted seeds from nine embryo-lethal mutants with different patterns of abnormal development was studied to determine the extent of cellular differentiation in arrested embryos from each mutant line. Abundant 12 S proteins were found in arrested embryos from two mutants with late lethal phases, but not in seven other mutants with lethal phases ranging from the globular to the cotyledon stages of embryo development. These results indicate that the accumulation of seed-storage proteins in wild-type embryos of Arabidopsis is closely tied to morphogenetic changes that occur during embryo development. Embryo-lethal mutants may therefore be useful in future studies on the developmental regulation of storage-protein synthesis.

Key words

Arabidopsis Cruciferin Embryolethal mutants Mutant (ArabidopsisStorage protein 





relative molecular weight


polyacrylamide gel electrophoresis


sodium dodecyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baus, A.D., Franzmann, L., Meinke, D.W. (1986) Growth in vitro of arrested embryos from lethal mutants of Arabidopsis thaliana. Theor. Appl. Genet. (in press)Google Scholar
  2. Brown, J.W.S., Ma, Y., Bliss, F.A., Hall, T.C. (1981) Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor. Appl. Genet. 59, 83–88Google Scholar
  3. Burr, F.A., Burr, B. (1982) Three mutations in Zea mays affecting zein accumulation: a comparison of zein polypeptides, in vitro synthesis and processing, mRNA levels, and genomic organization. J. Cell Biol. 94, 201–206Google Scholar
  4. Chang, C., Meyerowitz, E.M. (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc. Natl. Acad. Sci. USA 83, 1408–1412Google Scholar
  5. Crouch, M.L. (1982) Non-zygotic embryos of Brassica napus L. contain embryo-specific storage proteins. Planta 156, 520–524Google Scholar
  6. Crouch, M.L., Sussex, I.M. (1981) Development and storageprotein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153, 64–74Google Scholar
  7. Crouch, M.L., Tenbarge, K.M., Simon, A.E., Ferl, R. (1983) cDNA clones for Brassica napus seed storage proteins: Evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J. Mol. Appl. Genet. 2, 273–283Google Scholar
  8. Crouch, M.L., Tenbarge, K., Simon, A., Finkelstein, R., Scofield, S., Solberg, L. (1985) Storage protein mRNA levels can be regulated by abscisic acid in Brassica embryos. In: Molecular form and function of the plant genome, pp. 555–566, van Vloten-Doting, L., Groot, G.S.P., Hall, T.C., eds. Plenum Press, New YorkGoogle Scholar
  9. Estelle, M., Somerville, C.R. (1986) The mutants of Arabidopsis. Trends in Genet. 2, 89–93Google Scholar
  10. Finkelstein, R.R., Crouch, M.L. (1984) Precociously germinating rapeseed embryos retain characteristics of embryogeny. Planta 162, 125–131Google Scholar
  11. Finlayson, A.J. (1976) The seed protein contents of some Cruciferae. In: The biology and chemistry of the Cruciferae, pp. 279–306, Vaughan, J.G., McLeod, A.J., Jones, B.M.G., eds. Academic Press, New York LondonGoogle Scholar
  12. Forde, B.C., Kreis, M., Williamson, M.S., Fry, R.P., Pywell, J., Shewry, P.R., Bunce, N., Miflin, B.J. (1985) Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 4, 9–15Google Scholar
  13. Glossmann, H., Neville, D.M. (1971) Glycoproteins of cell surfaces. A comparative study of three different cell surfaces of the rat. J. Biol. Chem. 246, 6339–6346Google Scholar
  14. Goding, L.A., Bhatty, R.S., Finlayson, A.J. (1970) The characterization of the 12 S “globulin” from rapeseed and its glycoprotein content. Can. J. Biochem. 48, 1096–1103Google Scholar
  15. Goldberg, R.B., Fischer, R.L., Harada, J.J., Jofuku, D., Okamura, J.K. (1983a) Organization of soybean seed protein genomes and their flanking regions. In: Structure and function of plant genomes, pp. 37–45, Ciferri, O., Dure, L., eds. Plenum Press, New YorkGoogle Scholar
  16. Goldberg, R.B., Hoschek, G., Vodkin, L.O. (1983b) An insertion sequence blocks the expression of a soybean lectin gene. Cell 33, 465–475Google Scholar
  17. Higgins, T.J.V. (1984) Synthesis and regulation of major proteins in seeds. Annu. Rev. Plant Physiol. 35, 191–221Google Scholar
  18. Horowitz, J. (1985) A Phaseolus mutation results in a reduced level of lectin mRNA. Mol. Gen. Genet. 198, 482–485Google Scholar
  19. Koornneef, M., van Eden, J., Hanhart, C.J., Stam, P., Braaksma, F.J., Feenstra, W.J. (1983) Linkage map of Arabidopsis thaliana. J. Hered. 74, 265–272Google Scholar
  20. Kreis, M., Shewry, P.R., Forde, B.G., Rahman, S., Miflin, B.J. (1983) Molecular analysis of a mutation conferring the highlysine phenotype on the grain of barley (Hordeum vulgare). Cell 34, 161–167Google Scholar
  21. Ladin, B.F., Doyle, J.J., Beachy, R.N. (1984) Molecular characterization of a deletion mutation affecting the α-subunit of β-conglycinin of soybean. J. Mol. Appl. Genet. 2, 372–380Google Scholar
  22. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685Google Scholar
  23. Laroche, M., Aspart, L., Delseny, M., Penon, P. (1984) Characterization of radish (Raphanus sativus) storage proteins. Plant Physiol. 74, 487–493Google Scholar
  24. Leutwiler, L.S., Hough-Evans, B.R., Meyerowitz, E.M. (1984) The DNA of Arabidopsis thaliana. Mol. Gen. Genet. 194, 15–23Google Scholar
  25. Lonnerdal, B., Janson, J.C. (1972) Studies on Brassica seed proteins. I. The low molecular weight proteins in rapeseed. Isolation and characterization. Biochim. Biophys. Acta 278, 175–183Google Scholar
  26. Marsden, M.P.F., Meinke, D.W. (1985) Abnormal development of the suspensor in an embryo-lethal mutant of Arabidopsis thaliana. Am. J. Bot. 72, 1801–1812Google Scholar
  27. Meinke, D.W. (1982) Embryo-lethal mutants of Arabidopsis thaliana: Evidence for gametophytic expression of the mutant genes. Theor. Appl. Genet. 63, 381–386Google Scholar
  28. Meinke, D.W. (1985) Embryo-lethal mutants of Arabidopsis thaliana: Analysis of mutants with a wide range of lethal phases. Theor. Appl. Genet. 69, 543–552Google Scholar
  29. Meinke, D.W. (1986) Embryo-lethal mutants and the study of plant embryo development. Oxford Surveys of Plant Molecular and Cell Biology 3, (in press)Google Scholar
  30. Meinke, D.W., Baus, A.D. (1985) Gametophytic expression in embryo-lethal mutants of Arabidopsis thaliana. In: Biotechnology and ecology of pollen, pp. 15–20, Mulcahy, D., Mulcahy, G.B., Ottaviano, E., eds. Springer-Verlag, New York Berlin HeidelbergGoogle Scholar
  31. Meinke, D.W., Chen, J., Beachy, R.N. (1981) Expression of storage-protein genes during soybean seed development. Planta 153 130–139Google Scholar
  32. Meinke, D.W., Franzmann, L., Baus, A., Patton, D., Weldon, R., Heath, J.D., Monnot, C. (1985) Embryo-lethal mutants of Arabidopsis thaliana. In: Plant genetics, UCLA Symp. on Molec. and Cell. Biol. vol. 35, pp. 129–146, Freeling, M., ed. Alan Liss, New YorkGoogle Scholar
  33. Meinke, D.W., Sussex, I.M. (1979a) Embryo-lethal mutants of Arabidopsis thaliana: A model system for genetic analysis of plant embryo development. Dev. Biol. 72, 50–61Google Scholar
  34. Meinke, D.W., Sussex, I.M. (1979b) Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana. Dev. Biol. 72, 62–72Google Scholar
  35. Meyerowitz, E.M., Pruitt, R.E. (1985) Arabidopsis thaliana and plant molecular genetics. Science 229, 1214–1218Google Scholar
  36. Müller, A.J. (1963) Embryonentest zum Nachweis rezessiver Letalfaktoren bei Arabidopsis thaliana. Biol. Zentralbl. 82, 133–163Google Scholar
  37. Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497Google Scholar
  38. Pedersen, K., Devreux, J., Wilson, D.R., Sheldon, E., Larkins, B.A. (1982) Cloning and sequence analysis reveal structural variation among related zein genes in maize. Cell 29, 1015–1026Google Scholar
  39. Rédei, G.P. (1975) Arabidopsis as a genetic tool. Annu. Rev. Genet. 9, 111–127Google Scholar
  40. Schwenke, K.D., Raab, B., Linow, K.J., Pahtz, W., Uhlig, J. (1981) Isolation of the 12 S globulin from rapeseed (Brassica napus L.) and characterization as a “neutral” protein. Nahrung 25, 271–280Google Scholar
  41. Schwenke, K.D., Raab, B., Plietz, P., Damaschun, G. (1983) The structure of the 12 S globulin from rapeseed (Brassica napus L.). Nahrung 27, 165–175Google Scholar
  42. Simon, A.E., Tenbarge, K.M., Scofield, S., Finkelstein, R.R., Crouch, M.L. (1985) Nucleotide sequence of a cDNA clone of Brassica napus 12 S storage protein shows homology with legumin from Pisum sativum. Plant Mol. Biol. 5, 191–201Google Scholar
  43. Somerville, C.R., McCourt, P., Caspar, T., Estelle, M., Keith, K. (1985) Arabidopsis thaliana as a model system for plant genetics and molecular biology. In: Plant genetics, UCLA Symp. on Molec. and Cell. Biol., vol. 35, pp. 651–660, Freeling, M., ed. Alan Liss, New YorkGoogle Scholar
  44. Stuart, D.A., Nelsen, J. (1985) Factors affecting developmental processes in alfalfa cell cultures. In: Tissue culture in forestry and agriculture, pp. 59–73, Henke, R.R., Hughes, K.W., eds. Plenum Press, New YorkGoogle Scholar
  45. Thomson, J.A., Schroeder, H.E. (1978) Cotyledonary storage proteins in Pisum sativum. II. Hereditary variation in components of the legumin and vicilin fractions. Aust. J. Plant Physiol. 5, 281–294Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. D. Heath
    • 1
  • R. Weldon
    • 1
  • C. Monnot
    • 1
  • D. W. Meinke
    • 1
  1. 1.Department of Botany and MicrobiologyOklahoma State UniversityStillwaterUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations