Marine Biology

, Volume 99, Issue 2, pp 235–246 | Cite as

Population structure and energetics of the shallow-water antarctic sea star Odontaster validus in contrasting habitats

  • J. B. McClintock
  • J. S. Pearse
  • I. Bosch
Article

Abstract

Individuals and populations of Odontaster validus Koehler differed markedly among different habitats, as revealed in a study from October 1984 through January 1986 in McMurdo Sound, Antarctica. At McMurdo Station, individual sizes (wet weight) and population biomass (g wet wt m-2 and kJ m-2) decreased significantly with increasing depth. Individuals from shallow (10 to 20 m) habitats were in superior nutritional condition to those from deeper water (30 and 165 m), as shown by higher gonad and pyloric cecum indexes, and by higher lipid and energetic levels in the pyloric ceca. Moreover, gonadal output (reproductive output) was higher in shallow-water individuals. Higher levels of chlorophyll in the pyloric ceca and richer yellow to red coloration of the body wall in the shallow-water individuals indicate that they utilize the higher levels of primary production at shallow depths. At East Cape Armitage, where nearly permanent, thick, snow-covered ice most of the year resulted in very low levels of benthic primary production, the lowdensity sea stars were all very small and nutritionally similar to the deep-water individuals at McMurdo Station. At Cape Evans, where the generally snow-free sea-ice that broke up in mid-summer resulted in a luxurient benthic cover of diatoms and macroalgae, the sea stars were smaller than at McMurdo Station at comparable depths, but population densities were higher, resulting in 4 to 9 times greater biomass. Growth rates of sea stars fed in the laboratory were very low, especially compared to laboratory-reared temperate and tropical species; well-fed individuals need about 9 yr to reach 30 g wet weight, near the mean size of shallowwater individuals at McMurdo Station. No growth was detected in individuals caged at McMurdo Station for one year, suggesting even lower growth rates in the field. The stable size-frequency distributions at the different sites and depths throughout the year-long study suggest highly stable populations with low temporal variability in recruitment, migration and mortality. These data indicate that individuals and populations of O. validus quantitatively and qualitatively reflect the general level of productivity of a habitat. Differences noted in size, coloration, nutrition, and reproductive effort may be the result of long-term integration of local levels of primary production. These ubiquitous sea stars may serve as a biotic indicator of productivity in localized habitats around the continental shelf of Antarctica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Arnaud, P. M. (1974). Contribution a la bionomie marine benthique des regions antarctiques et subantarctiques. Téthys 6: 467–653Google Scholar
  2. Barker, M. F. (1979). Breeding and recruitment in a population of the New Zealand starfish Stichaster australis (Verrill) and Coscinasterias calamaria (Grey) (Echinodermata: Asteroidea). J. exp. mar. Biol. Ecol. 33: 1–36Google Scholar
  3. Barker, M. F., Nichols D. (1983). Reproduction, recruitment and juvenile ecology of the starfish, Asterias rubens and Marthasterias glacialis. J. mar. biol. Ass. U.K. 63: 745–765Google Scholar
  4. Blankley, W. O. (1984). Ecology of the starfish Anasterias rupicola at Marion Island (Southern Ocean). Mar. Ecol. Prog. Ser. 18: 131–137Google Scholar
  5. Brody, S. (1945). Bioenergetics of growth. Hafner Publishing Co. Inc., New YorkGoogle Scholar
  6. Bunt, J. S. (1964). Primary production of undersea ice in Antarctic waters. 2. Influence of light and other factors on photosynthetic activities of Antarctic microalgae. Antarctic Res. Ser. 1: 27–31Google Scholar
  7. Christensen, A. M. (1970). Feeding biology of the sea-star Astropecten irregularis Pennant. Ophelia 8: 1–134Google Scholar
  8. Clarke, A. (1980). A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol. J. Linn. Soc. 14: 77–92Google Scholar
  9. Clarke, A. (1983). Life in cold water. The physiological ecology of polar marine ectotherms. Oceanogr. mar. Biol. A. Rev. 21: 341–453Google Scholar
  10. Conover, W. J. (1971). Practical nonparametric statistics. John Wiley & Sons, Inc., New YorkGoogle Scholar
  11. Crump, R. G. (1971). Annual reproductive cycle in three geographically separated populations of Patiria regularis (Verrill), a common New Zealand asteroid. J. exp. mar. Biol. Ecol. 7: 137–162Google Scholar
  12. Dayton, P. K. (1979). Observations on growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. In: Levian, C., Bourny-Esnault, N. (eds.) Sponge biology. Centre National de la Recherche Scientifique (C.N.R.S.), Paris, p. 271–283Google Scholar
  13. Dayton, P. K., Oliver, J. S. (1977). Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science, N. Y. 197: 55–58Google Scholar
  14. Dayton, P. K., Robilliard, G. A., Paine, R. T. (1970). Benthic faunal zonation as a result of anchor ice at McMurdo Sound, Antarctica. In: Holgate, M. W. (ed.) Antarctic ecology. Vol. 1. Academic Press, London, p. 244–258Google Scholar
  15. Dayton, P. K., Robilliard, G. A., Paine, R. T., Dayton, L. B. (1974). Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44: 105–128Google Scholar
  16. Dayton, P. K., Watson, D., Palmaisano, A., Barry, J. P., Oliver, J. S. and Rivera, R. (1986). Distribution patterns of benthic microalgal standing stock at McMurdo Sound, Antarctica. Polar Biol. 6: 207–213Google Scholar
  17. Dearborn, J. H. (1965). Ecological and faunistic investigations of the marine benthos at McMurdo Sound, Antarctica. Ph. D. thesis, Stanford University, California, USAGoogle Scholar
  18. Dearborn, J. H. (1967). Stanford University invertebrate studies in the Ross Sea, 1958–1960: general account and station list. The fauna of the Ross Sea. Part 5. General accounts, station lists, and benthic ecology. Bull. N. Z. Dep. scient. ind. Res. 176: 31–47Google Scholar
  19. Dearborn, J. H. (1977). Foods and feeding characteristics of antarctic asteroids and ophiuroids. In: Llano G. A. (ed.) Adaptations within Antarctic ecosystems. Gulf Publishing Co., Texas, p. 293–326Google Scholar
  20. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, R. (1953). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356Google Scholar
  21. Ebert, T. A. (1973). Estimating growth and mortality rates from size data. Oecologia 11: 281–298Google Scholar
  22. Ebert, T. A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecol. Monogr. 52: 353–394Google Scholar
  23. Ebert, T. A. (1983). Recruitment in echinoderms. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies. Balkema Press, Rotterdam, p. 169–203Google Scholar
  24. Emlet, R. B., McEdward, L. R., Strathmann, R. R. (1987). Echinoderm larval ecology viewed from the egg. In: Jangoux, M., Lawrence, J. M. (eds.), Echinoderm studies 2. Balkema Press, Rotterdam, p. 55–136Google Scholar
  25. Feder, H. M. (1956). Natural history studies on the starfish Pisaster ochraceus (Brandt, 1835) in the Monterey Bay area. Ph. D. thesis, Stanford University, California, USAGoogle Scholar
  26. Feder, H. M. (1970). Growth and predation by the ochre seastar, Pisaster ochraceus (Brandt), in Monterey Bay, California. Ophelia 8: 161–185Google Scholar
  27. Fell, H. B., Dawsey, S. (1969). Asteroidea. Antarctic Map Folio Ser. 11: 42–43Google Scholar
  28. Fenchel, T. (1965) Feeding biology of the sea-star Luidia sarsi Duben and Koren. Ophelia 2: 223–236Google Scholar
  29. Freeman, N. K., Lindgren, F. T., Ng, N. Y., Nichols, A. V., (1957). Infrared spectra of some lipoproteins and related lipids. J. biol. Chem. 203: 293–304Google Scholar
  30. Grossi, S. M., Kottmeier, S. T., Moe, R. L., Taylor, G. T., Sullivan, C. W. (1987). Sea ice microbial communities: VI. Growth and primary production in bottom ice under graded snow cover. Mar. Ecol. Prog. Ser. 35: 153–164Google Scholar
  31. Highsmith, R. (1977) Larval substrate selection, metamorphosis and mortality in the sand dollar, Dendraster excentricus. Am. Zool. 17: p. 935Google Scholar
  32. Hodson, R. E., Azam, F., Carlucci, A. F., Fuhrman, J. A., Karl, D. M., Holm-Hansen, O. (1981). Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar. Biol. 61: 89–94Google Scholar
  33. Lawrence, J. M. (1985). The energetic echinoderm In: Keegan, F., O'Connor, D. S. (eds.) Echinodermata. Proceedings of Fifth International Echinoderm Conference. Balkema Press, Rotterdam, p 47–67Google Scholar
  34. Lawrence, J. M., Dehn, P. K. (1979). Biological characteristics of Luidia clathrata (Echinodermata: Asteroidea) from Tampa Bay and the shallow waters of the Gulf of Mexico. Fla Scient. 1: 9–13Google Scholar
  35. Lawrence, J. M., Guille, A. (1982). Organic composition of tropical, polar and temperate-water echinoderms. Comp. Biochem. Physiol. 72B: 283–287Google Scholar
  36. Lawrence, J. M., Lane J. M. (1982). The utilization of nutrients by post-metamorphic echinoderms. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm nutrition. Balkema Press, Rotterdam, p. 331–371Google Scholar
  37. Lawrence, J. M., McClintock, J. B., Guille, A. (1984). Organic and caloric content of eggs of brooding asteroids and an echinoid (Echinodermata) from Kerguelen (South Indian Ocean). Int. J. Invertebrate Reprod. Dev. (Amsterdam) 7: 249–257Google Scholar
  38. Littlepage, J. L. (1965). Additional oceanographic studies in McMurdo Sound, Antarctica. Antarctic Res. Ser. 5: 1–37Google Scholar
  39. Littlepage, J. L., Pearse, J. S. (1962). Biological and oceanographic observations under an antarctic ice shelf. Science, N.Y. 137: 679–681Google Scholar
  40. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. J. biol. Chem. 193: 265–275Google Scholar
  41. Mauzey, K. P. (1966). Feeding behavior and reproductive cycles in Pisaster ochraceus. Biol. Bull. mar. biol. Lab. Woods Hole 131: 127–144Google Scholar
  42. McClintock, J. B. (1987). Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges in McMurdo Sound, Antarctica. Mar. Biol. 94: 479–487Google Scholar
  43. McClintock, J. B., Pearse, J. S. (1986). Organic and energetic content of eggs and juveniles of antarctic echinoids and asteroids with lecithotrophic development. Comp. Biochem. Physiol. 85A: 341–345Google Scholar
  44. McClintock, J. B., Pearse, J. S. (1987a). Biochemical composition of antarctic echinoderms. Comp. Biochem. Physiol. 86B: 683–687Google Scholar
  45. McClintock, J. B., Pearse, J. S. (1987b). Reproductive biology of the common antarctic crinoid Promachocrinus kerguelensis (Echinodermata: Crinoidea). Mar. Biol. 96: 375–383Google Scholar
  46. Menge, B. A. (1972). Foraging strategy of a starfish in relation to actual prey availability and environmental predictability. Ecol. Monogr. 42: 25–50Google Scholar
  47. Olson, R. R., Bosch, I., Pearse, J. S. (1987). The antarctic larval food limitation hypothesis examined for the asteroid Odontaster validus. Limnol. Oceanogr. 32: 686–690Google Scholar
  48. Paine, R. T. (1969). The Pisaster-Tegula interaction: prey patches, predator food preferences, and intertidal community structure. Ecology 50: 950–961Google Scholar
  49. Paine, R. T. (1976a). Size-limited predation: an observational and experimental approach with the Mytilus-Pisaster interaction. Ecology 57: 858–873Google Scholar
  50. Paine, R. T. (1967b). Biological observations on a subtidal Mytilus californianus bed. Veliger 19: 125–130Google Scholar
  51. Pearse, J. S. (1962). Letters. Scient. Am. 207: p. 12Google Scholar
  52. Pearse, J. S. (1965). Reproductive periodicities in several contrasting populations of Odontaster validus Koehler, a common antarctic asteroid. Biol. Antarctic Seas II. Antarctic Res. Ser. 5: 39–85Google Scholar
  53. Pearse, J. S. (1967). Coelomic water volume control in the antarctic sea-star Odontaster validus. Nature, Lond. 216: 1118–1119Google Scholar
  54. Pearse, J. S. (1969a). Antarctic sea star. Austr. nat. Hist. (Aust. Mus. Mag.) 16: 234–238Google Scholar
  55. Pearse, J. S. (1969b). Slow developing demersal embryos and larvae of the antarctic sea star Odontaster validus. Mar. Biol. 3: 110–116Google Scholar
  56. Pearse, J. S., Bosch, I. (1986). Are the feeding larvae of the commonest antarctic asteroid really demersal? Bull. mar. Sci. 39: 477–484Google Scholar
  57. Pearse, J. S., Bosch, I., McClintock, J. B. (1985). Contrasting modes of reproduction in shallow-water antarctic marine invertebrates. Antarctic J. U.S. 30: 138–139Google Scholar
  58. Pearse, J. S., Bosch, I., McClintock, J. B., Marinovic, B., Britton, R. L. (1986). Contrasting tempos of reproduction by shallowwater animals in McMurdo Sound, Antarctica. Antarctic J. U. S. 21: 182–184Google Scholar
  59. Peckham, V. (1964). Year-round scuba diving in the Antarctic. Polar Rec. 12: 143–146Google Scholar
  60. Rivkin, R. B., Bosch, I., Pearse, J. S., Lessard, E. J. (1986). Bacterivory: a novel feeding mode for asteroid larvae. Science, N. Y. 233: 1311–1314Google Scholar
  61. Rivkin, R. B., Voytek, M. A. (1987). Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica 1. Species-specific and community responses to reduced irradiances. Limnol. Oceanogr. 32: 249–259Google Scholar
  62. Rutherford, J. C. (1973). Reproduction, growth and mortality of the holothurian Cucumaria pseudocurata. Mar. Biol. 22: 167–176Google Scholar
  63. Schaffer, M. W. (1974). Optimal reproductive effort in fluctuating environments. Am. Nat. 108: 783–790Google Scholar
  64. Scheibling, R. E. (1980a). Dynamics and feeding activity of highdensity aggregations of Oreaster reticulatus (L.) (Echinodermata: Asteroidea) in a sand patch habitat. Mar. Ecol. Prog. Ser. 2: 321–327Google Scholar
  65. Scheibling R. E. (1980b). Abundance, spatial distribution, and size structure of populations of Oreaster reticulatus (Echinodermata: Asteroidea) in seagrass beds. Mar. Biol. 57: 95–105Google Scholar
  66. Scheibling, R. E. (1980c). Abundance, spatial distribution, and size structure of Oreaster reticulatus (Echinodermata: Asteroidea) on sand bottoms. Mar. Biol. 57: 107–119Google Scholar
  67. Smith, G. F. M. (1940) Factors limiting distribution and size in the starfish. J. Fish. Res. Bd Can. 5: 84–103Google Scholar
  68. Stearns, S. C. (1977). The evolution of life history traits: a critique of the theory and a review of the data. A. Rev. Ecol. Syst. 8: 145–171Google Scholar
  69. Sullivan, C. W., Palmaisano, A. C., SooHoo, J. B. (1984). Influence of sea ice and ice biota on downwelling irradiance and spectral composition of light in McMurdo Sound. Proc. Soc. photo-opt. Instrmn Engrs 489: 159–165Google Scholar
  70. Tegner, M. J., Dayton, P. K. (1977). Sea urchin recruitment patterns and implications of commercial fishing. Science, N. Y. 196: 324–326Google Scholar
  71. Timko, P. (1979). Larviphagy and oophagy in benthic invertebrates: a demonstration for Dendraster excentricus (Echinoidea). In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. Columbia: University of South Carolina Press, Columbia, p. 91–98Google Scholar
  72. Vevers, H. G. (1949). The biology of Asterias rubens L: growth and reproduction. J. mar. biol. Ass. U. K. 28: 165–187Google Scholar
  73. White, D. C., Smith, G. A., Nichols, P. D., Stanton, G. R., Palmaisano, A. C. (1985). Lipid composition and microbial activity of selected recent antarctic benthic marine sediments and organisms: a mechanism for monitoring and comparing microbial populations. Antarctic J. U.S. 19: 130–132Google Scholar
  74. Yamaguchi, M. (1974). Growth of juvenile Acanthaster planci in the laboratory. Pacif. Sci. 28: 123–138Google Scholar
  75. Yamaguchi, M. (1975). Estimating growth parameters from growth rate data. Problems with sedentary invertebrates. Oecologia 20: 321–332Google Scholar
  76. Yamaguchi, M. (1977a). Estimating the length of the exponential growth phase: growth increment observations on the coral-reef asteroid Culcita novaeguineae. Mar. Biol. 39: 57–59Google Scholar
  77. Yamaguchi, M. (1977b). Population structure, spawning, and growth of the coral reef asteroid Linkia laevigata (Linnaeus). Pacif. Sci. 31: 13–30Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. B. McClintock
    • 1
  • J. S. Pearse
    • 1
  • I. Bosch
    • 1
  1. 1.Institute of Marine Sciences and Biology Board of StudiesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations