Marine Biology

, Volume 99, Issue 2, pp 167–176 | Cite as

Heat waves, baby booms, and the destruction of kelp beds by sea urchins

  • M. W. Hart
  • R. E. Scheibling


Large populations of sea urchins, Strongylocentrotus droebachiensis (Müller), destroyed kelp beds along the Atlantic coast of Nova Scotia in the 1960's and 1970's. The origin of these large sea urchin populations is not understood. We have investigated the potential influence of variable growth and development of the planktonic larvae of sea urchins (in response to temperature and food abundance) on recruitment of benthic juveniles. The adult sea urchins were collected at Sandy Cove, Digby County, Nova Scotia, Canada, in December 1986. Temperature strongly affected larval size and the growth of the echinus rudiment within the range 3° to 9°C, and larvae grew most rapidly at 14°C. Food abundance had a smaller effect on larval growth, and these effects were apparent only at high temperature. Larvae fed the same concentration of two different algal food species grew and developed similarly. Correspondence between spring temperature variation and qualitative variation in sea urchin recruitment, as well as strong temperature effects on larval growth in culture, and the occurrence of a large, positive temperature anomaly in June 1960, all suggest that temperature effects on larval growth and development may have led to intense sea urchin recruitment in 1960 and the appearance of large adult populations 4 to 6 yr later. This result invites further research.


Nova Scotia Cove Larval Growth Baby Boom Food Abundance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Birkeland, C. (1982). Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Mar. Biol. 69: 175–185Google Scholar
  2. Breen, P. A., Mann, K. H. (1976a). Changing lobster abundance and the destruction of kelp beds by sea urchins. Mar. Biol. 34: 137–142Google Scholar
  3. Breen, P. A., Mann, K. H. (1976b). Destructive grazing of kelp by sea urchins in Eastern Canada. J. Fish. Res. Bd. Can. 33: 1278–1283Google Scholar
  4. Camp, D. K., Cobb, S. P., Van Breedveld, J. F. (1973). Overgrazing of seagrasses by a regular urchin, Lytechinus variegatus. Biosci. 23: 37–38Google Scholar
  5. Chapman, A. R. O. (1986). Population and community ecology of seaweeds. Adv. Mar. Biol. 23: 1–161Google Scholar
  6. Ebert, T. (1983). Recruitment in echinoderms. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm Studies. Vol. 1. A. A. Balkema, Rotterdam, p. 169–203Google Scholar
  7. Elner, R. W. (1980). Predation on the sea urchin (Strongylocentrotus droebachiensis) by the American lobster (Homarus americanus) and the rock crab (Cancer irroratus). In: Pringle, J. D., Sharp, G. J., Caddy, J. F. (eds.) Proceedings of the workshop on the relationships between sea urchin grazing and commercial plant/animal havesting. Can. tech. Rept. Fish. Aquat. Sci., Halifax p. 954Google Scholar
  8. Emlet, R. B. (1986). Facultative planktotrophy in the tropical echinoid Clypeaster rosaceus (Linnaeus) and a comparison with obligate planktotrophy in Clypeaster subdepressus (Gray) (Clypeasteroidea: Echinoidea). J. exp. mar. Biol. Ecol. 95: 183–202Google Scholar
  9. Evans, P. D., Mann, K. H. (1977). Selection of prey by American lobsters (Homarus americanus) when offered a choice between sea urchins and crabs. Can. J. Fish. aquat. Sci. 34: 2203–2207Google Scholar
  10. Fenaux, L., Cellario, C., Etienne, M. (1985). Croissance de la larve de l'oursin Paracentrotus lividus. Mar. Biol. 86: 151–157Google Scholar
  11. Foreman, R. E. (1977). Benthic community modification and recovery following intensive grazing by Strongylocentrotus droebachiensis. Helgoländer wiss. Meeresunters. 30: 468–484Google Scholar
  12. Hagen, N. T. (1983). Destructive grazing of kelp beds by sea urchins in Vestfjorden, northern Norway. Sarsia 68: 177–190Google Scholar
  13. Highsmith, R. C., Emlet, R. B. (1986). Delayed metamorphosis: effect on growth and survival of juvenile sand dollars (Echinoidea: Clypeasteroida). Bull. mar. Sci. 39: 347–361Google Scholar
  14. Himmelman, J. H. (1978). Reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis. Can J. Zool. 56: 1828–1836Google Scholar
  15. Hinegardner R. T. (1969). Growth and development of the laboratory cultured sea urchin. Biol. Bull. mar. biol. Lab., Woods Hole 137: 465–475Google Scholar
  16. Hollister, H. J., Sandnes, A. M. (1972). Sea surface temperatures and salinities at shore stations on the British Columbia coast 1914–1970. Environ. Can. pacif. mar. Sci. Rep. 72-13: 1–93Google Scholar
  17. Jensen, M. (1974). The Strongylocentrotidae (Echinoidea), a morphologic and systematic study. Sarsia 57: 113–148Google Scholar
  18. Lang, C., Mann, K. H. (1976). Changes in sea urchins populations after the destruction of kelp beds. Mar. Biol. 36: 321–326Google Scholar
  19. Lauzier, L. M. Hull, J. H. (1969). Coastal station data: temperatures along the Atlantic coast 1921–1969. Fish. Res. Bd Can. techn. Rep. No. 150Google Scholar
  20. Lawrence, J. M. (1975). On the relationships between marine plants and sea urchins. Oceanogr. Mar. Biol. Ann. Rev. 13: 213–286Google Scholar
  21. Lawrence, J. M., Sammarco, P. W.: (1982). Effects of feeding on the environment: Echinoidea. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm nutrition. A. A. Balkema, Rotterdam, p. 283–316Google Scholar
  22. Lucas, J. S. (1982). Quantitative studies of feeding and nutrition during larval development of the coral reef asteroid Acanthaster planci (L.). J. exp. mar. Biol. Ecol. 65: 173–193Google Scholar
  23. Mann, K. H. (1977). Destruction of kelp-beds by sea-urchins: A cyclical phenomenon or irreversible degradation. Helgoländer wiss. Meeresunters. 30: 455–467Google Scholar
  24. Mann, K. H. (1982). Kelp, sea urchins and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970–1980. Neth. J. Sea. Res. 16: 414–423Google Scholar
  25. Mann, K. H. (1985). Invertebrate behaviour and the structure of marine benthic communities. In: Sibley, R. M., Smith, R. H. (eds.) Behavioural Ecology. Blackwell Scientific Publications, Oxford, p. 227–246Google Scholar
  26. Mann, K. H., Breen, P. A. (1972). The relation between lobster abundance, sea urchins, and kelp beds. J. Fish. Res. Bd Can. 29: 603–609Google Scholar
  27. McEdward, L. R. (1984). Morphometric and metabolic analysis of the growth and form of an echinopluteus. J. exp. mar. Biol. Ecol. 82: 259–287Google Scholar
  28. McEdward, L. R. (1985). Effects of temperature on the body form, growth, electron transport system activity, and development rate of an echinopluteus. J. exp. mar. Biol. Ecol. 93: 169–181Google Scholar
  29. Miller, R. J. (1985a). Seaweeds, sea urchins, and lobsters: a reappraisal. Can. J. Fish. aquat. Sci. 42: 2061–2072Google Scholar
  30. Miller, R. J. (1985b). Succession in sea urchin and seaweed abundance in Nova Scotia, Canada. Mar. Biol. 84: 275–286Google Scholar
  31. Miller, R. J., Colodey, A. G. (1983). Widespread mass mortalities of the green sea urchin in Nova Scotia, Canada. Mar. Biol. 73: 263–267Google Scholar
  32. Miller, R. J., Mann, K. H. (1973). Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. Mar. Biol. 18: 99–114Google Scholar
  33. North, W. J., Pearse, J. S. (1970). Sea urchin population explosion in southern California coastal waters. Science, N.Y. 167: 209Google Scholar
  34. Olson, R. R. (1985). In situ culturing of larvae of the crown-of-thorns starfish Acanthaster planci. Mar. Ecol. Prog. Ser. 25: 207–210Google Scholar
  35. Paulay, G., Boring, L., Strathmann, R. R. (1985). Food limited growth and development of larvae: experiments with natural sea water. J. exp. mar. Biol. Ecol. 93: 1–10Google Scholar
  36. Platt, T., Irwin, B. (1968). Primary productivity measurements in St. Margaret's Bay, 1967. Fish. Res. Bd Can. tech. Rep. No. 77Google Scholar
  37. Platt, T., Irwin, B. (1970). Primary productivity measurements in St. Margaret's Bay, 1968–1970. Fish. Res. Bd Can. tech. Rep. No. 203Google Scholar
  38. Raymond, B. G. (1985). Behavior and growth of the early life history stages of Strongylocentrotus droebachiensis. M.Sc. thesis, Dalhousie University, HalifaxGoogle Scholar
  39. Raymond, B. G., Scheibling, R. E. (1987). Recruitment and growth of the sea urchin Strongylocentrotus droebachiensis (Müller) following mass mortalities off Nova Scotia, Canada. J. exp. mar. Biol. Ecol. 108: 31–54Google Scholar
  40. Roller, R. A., Stickle, W. B. (1985). Effects of salinity on larval tolerance and early developmental rates of four species of echinoderms. Can. J. Zool. 63: 1531–1538Google Scholar
  41. Rumrill, S. S., Chia, F. S. (1984). Differential mortality during the embryonic and larval lives of northeast Pacific echinoids. In: Keegan, B. F., O'Connor, B. D. S. (eds.) Proceedings of the Fifth International Echinoderms Conference. A. A. Balkema, Rotterdam, p. 333–338Google Scholar
  42. Rumrill, S. S., Pennington, J. T., Chia, F. S. (1985). Differential susceptibility of marine invertebrate larvae: laboratory predation of sand dollar, Dendraster excentricus (Escholtz), embryos and larvae by zoeae of the red crab, Cancer productus Randall. J. exp. mar. Biol. Ecol. 90: 193–208Google Scholar
  43. Scheibling, R. E. (1984). Echinoids, epizootics and ecological stability in the rocky subtidal off Nova Scotia, Canada. Helgoländer wiss. Meeresunters. 37: 232–242Google Scholar
  44. Scheibling, R. E. (1986). Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68: 186–198Google Scholar
  45. Scheibling, R. E., Stephenson, R. L. (1984). Mass mortality of Strongylocentrotus droebachiensis (Echinodermata: Echinoidea) off Nova Scotia, Canada. Mar. Biol. 78: 153–164Google Scholar
  46. Stephens, R. E. (1972). Studies on the development of the sea urchin Strongylocentrotus droebachiensis. I. Ecology and normal development. Biol. Bull mar. biol. Lab., Woods Hole 142: 132–144Google Scholar
  47. Strathmann, R. R. (1971). The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension feeding. J. exp. mar. Biol. Ecol. 6: 109–160Google Scholar
  48. Strathmann, R. R. (1978). Length of pelagic period in echinoderms with feeding larvae from the northeast Pacific. J. exp. mar. Biol. Ecol. 34: 23–27Google Scholar
  49. Tegner, M. J., Dayton, P. K. (1981). Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in a kelp forest. Mar. Ecol. Prog. Ser. 5: 255–268Google Scholar
  50. Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45Google Scholar
  51. Vadas, R. L., Elner, R. W., Garwood, P. E., Babb, I. G. (1986). Experimental evaluation of aggregation behavior in the sea urchin Strongylocentrotus droebachiensis. A reinterpretation. Mar. Biol. 90: 433–448Google Scholar
  52. Wharton, W. G., Mann, K. H. (1981). Relationship between destructive grazing by the sea urchin, Strongylocentrotus droebachiensis, and the abundance of American lobster, Homarus americanus, on the Atlantic coast of Nova Scotia. Can. J. Fish. aquat. Sci. 38: 1339–1349Google Scholar
  53. Zar, J. H. (1974). Biostatistical analysis. Prentice-Hall, Englewood Cliffs.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. W. Hart
    • 1
  • R. E. Scheibling
    • 1
  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations