Marine Biology

, Volume 100, Issue 2, pp 185–193

Resource partitioning by reef corals as determined from stable isotope composition

I. δ13C of zooxanthellae and animal tissue vs depth
  • L. Muscatine
  • J. W. Porter
  • I. R. Kaplan

DOI: 10.1007/BF00391957

Cite this article as:
Muscatine, L., Porter, J.W. & Kaplan, I.R. Marine Biology (1989) 100: 185. doi:10.1007/BF00391957


The pattern of resource partitioning vs depth by corals collected in February 1983 from Jamaica and the Red Sea was determined from their stable carbon isotope composition. Observations were made on isolated zooxanthellae and corresponding algae-free animal tissue from eight species at four depths over a 50 m bathymetric range. Zooxanthellae δ13C was high in shallow water and became lower as depth increased. This trend correlated significantly with the anual integrated photosynthetic rate. The trend is interpreted according to a “depletion-diffusion” hypothesis; in shallow water, at high rates of photosynthesis, metabolic CO2 is nearly depleted and the supply of CO2 from seawater bicarbonate is limited by diffusion. Since most of the available CO2 is fixed, isotope fractionation is minimal. In deeper water, at lower rates of photosynthesis, metabolic CO2 is ample, and isotope fractionation is greater. Animal tissue δ13C was slightly lower than corresponding zooxanthellae values in shallow water. As depth increased the difference between zooxanthellae and animal tissue δ13C increased and the latter approached the δ13C of oceanic particulate organic carbon. These data suggest that carbon is translocated at all depths and that deep-water corals draw significantly on allocthonous sources of carbon.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • L. Muscatine
    • 1
  • J. W. Porter
    • 2
  • I. R. Kaplan
    • 3
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of BiologyUniversity of GeorgiaAthensUSA
  3. 3.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations