Marine Biology

, Volume 102, Issue 1, pp 127–133 | Cite as

Elemental concentrations of hydrothermal vent organisms from the Galápagos Rift

  • D. R. Smith
  • A. R. Flegal


Concentrations of 40 elements were determined in tissues and whole bodies of mussels (Bathymodiolus thermophilus) and/or whole bodies of limpets (Neomphalus fretterae) collected from the submarine thermal springs on the Galápagos Rift in 1977. Concentrations of Ag, As, Fe, Mn, Mo, Se, Sr, and Zn were comparable or elevated relative to those of intertidal mollusks, which have been utilized as indicators of anthropogenic trace-metal contamination. Both species contained concentrations of some elements (e.g. Ag, As, Fe, Mn, Mo, Se, Zn) which corresponded with the elevated levels of those elements discharged from hydrothermal vents. Many elements were most enriched in the gills and digestive glands of the mussels. Iron:manganese ratios of those tissues were similar to ratios of pelagic and transitional sediments, indicating that metal-rich suspended particulates had been absorbed onto mucous membranes. Comparisons with other benthopelagic organisms were precluded, since the present data represent essentially the only trace-element analyses of deep-sea macroinvertebrates.


Iron Manganese Elevated Level Elemental Concentration Mucous Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Belkin, S., Nelson, D., Jannasch, H. (1986). Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. mar. biol. Lab., Woods Hole 170: 110–121Google Scholar
  2. Bertine, K. K., Goldberg, E. D. (1972). Trace elements in clams, mussels, and shrimp. Limnol. Oceanogr. 17(6): 877–884Google Scholar
  3. Bischoff, J. L., Rosenbau, R. J., Aruscava, P. J., Baedecke, P. A., Crock, J. G. (1983) Sea floor massive sulfide deposits from 21 degrees N. East Pacific Rise-Juan de Fuca Ridge and Galápagos Rift-bulk chemical composition and economic implications. Econ. Geol. 78: 1711–1720Google Scholar
  4. Bolger, G. W., Betzer, P. R., Gordeev, V. V. (1978). Hydrothermally-derived manganese suspended over the Galápagos Spreading Center. Deep-Sea Res. 25: 721–733Google Scholar
  5. Brooks, R., Rumsby, M. (1965). The biogeochemistry of trace elements uptake by some New Zealand bivalves. Limnol. Oceanogr. 10: 521–527Google Scholar
  6. Bruland, K. W. (1983). Trace elements in sea-water. In: Riley, J. P., Chester, R. (eds.) Chemical oceanography. Vol. 8. Academic Press, New York, p. 157–220Google Scholar
  7. Bryan, G. W. (1973). The occurrence and seasonal variation of trace metals in the scallops Pecten maximus (L.) and Chlamys opercularis (L.). J. mar. biol. Ass. U.K. 53: 145–166Google Scholar
  8. Canadian American Seamount Expedition (1985). Hydrothermal vents on an axis seamount of the Juan de Fuca ridge. Nature, Lond. 313: 212–214Google Scholar
  9. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. R., Ballard, R. D., Green, K., Williams, D., Bainbridge, A. E., Crane, K., van Andel, Tj. H. (1979). Submarine thermal springs on the Galápagos Rift. Science, N.Y. 203: 1073–1083Google Scholar
  10. Desbruyeres, D., Laubier, L. (1983). Primary consumers from hydrothermal vents animal communities. In: Rona, P. A., Bostrom, K., Laubier, L., Smith, K. L. Jr. (eds.) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, p. 711–734Google Scholar
  11. Edmond, J. M., Measures, C., Mangum, B., Grant, B., Sclater, F. R., Collier, R., Hudson, A. (1979a). On the formation of metal-rich deposits at ridge crests. Earth planet. Sci. Lett. 46: 19–30Google Scholar
  12. Edmond, J. M., Measures, C., McDuff, R., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., Corliss, J. B. (1979b) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galápagos data. Earth planet. Sci Lett. 46: 1–18Google Scholar
  13. Edmond, J. M., Von Damn, K. L., McDuff, R. E., Measures, C. I. (1982). Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature, Lond. 297: 187–191Google Scholar
  14. Fiala-Médioni, A., Alayse, A. M., Cahet, G. (1986). Evidence of in situ uptake and incorporation of bicarbonate and amino acids by a hydrothermal vent mussel. J. exp. mar. Biol. Ecol. 96: 191–198Google Scholar
  15. Flegal, A. R. (1978). Trace element concentration of the Rough Limpet, Acmaea scabra, in California. Bull. envir. Contam. Toxic. 20: 834–839Google Scholar
  16. Flegal, A. R., Martin, J. H. (1977). Contamination of biological samples by ingested sediment. Mar. Pollut. Bull. 8: 90–92Google Scholar
  17. Flegal, A. R., Rosmann, K. J. R., Stephenson, M. D. (1987). Isotope systematics of contaminant leads in Monterey Bay. Envir. Sci. Technol. 21: 1075–1079Google Scholar
  18. Fyfe, W. S. (1977) Effects on biological evolution of changes in ocean chemistry. Nature, Lond. 267: p. 510Google Scholar
  19. Goldberg, E.D., Bowen, V. T., Farrington, J. W., Harvey, G., Martin, J. H., Parker, P. L., Risebrough, R. W., Robertson, W., Schneider, E., Gamble, E. (1978). The mussel watch. Envir. Conserv. 5: 101–125Google Scholar
  20. Goldberg, E. D., Koide, M., Hodge, V., Flegal, A. R., Martin, J. H. (1983). U.S. mussel watch: 1977–1978 results on trace metals and radionuclides. Estuar. cstl Shelf Sci. 16: 69–93Google Scholar
  21. Goldberg, E. D., Martin, J. H. (1983). Metals in seawater as recorded by mussels. In: Wong, C. S., Boyle, E., Bruland, K. W., Burton, J. D., Goldberg, E. D. (eds.) Trace metals in seawater. Plenum Press, New York, p. 811–823Google Scholar
  22. Grassle, J. F. (1985). Hydrothermal vent animals: distribution and biology. Science, N.Y. 229: 713–717Google Scholar
  23. Heft, R. E., Martin, W. H. (1977). NADAC and MERGE — computer codes for processing neutron activation analysis data. Lawrence Livermore Laboratory, University of California (UCRL Document 52249)Google Scholar
  24. Hessler, R. R., Smithey, W. M. (1983). The distribution and community structure of megafauna at the Galápagos Rift hydrothermal vents. In: Rona, P. A., Bostrom, K., Laubier, L., Smith, K. L., Jr. (eds.) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, p. 735–770Google Scholar
  25. Jannasch, H. W. (1984). Chemosynthesis: the nutritional basis for life at deep-sea vents. Oceanus 27 (3): 73–78Google Scholar
  26. Jannasch, H. W., Mottl, M. J. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, N.Y. 229: 717–725Google Scholar
  27. Johnson, K., Beehler, C., Sakamoto, C., Childress, J. (1986). In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science, N.Y. 231 (4742): 1139–1141Google Scholar
  28. Karl, D. W., Wirsen, C. O., Jannasch, H. W. (1980). Deep-sea primary production at the Galápagos hydrothermal vents. Science, N.Y. 207: 1345–1347Google Scholar
  29. Katz, A., Kaplan, I. R. (1981). Heavy metals behavior in coastal sediments of Southern California: a critical review and synthesis. Mar. Chem. 10: 261–299Google Scholar
  30. Klinkhammer, G, Bender, M., Weiss, R. F. (1977). Hydrothermal manganese in the Galápagos Rift. Nature, Lond. 269: 319–320Google Scholar
  31. Koski, R. A., Normark, W. R., Morton, J. L., Delaney, J. R. (1982). Metal sulfide deposits on the Juan de Fuca Ridge. Oceanus 25 (3): 42–48Google Scholar
  32. Leatherland, T. M., Burton, J. D. (1974). The occurrence of some trace metals in coastal organisms with particular reference to the Solent region. J. mar. biol. Ass. U.K. 54: 457–468Google Scholar
  33. Le Pennec, M., Prieur, D. (1984). Observations sur la nutrition d'un site hydrothermal actif de la dorsale du Pacifique Oriental. C.r. hebd. Séanc. Acad. Sci., Paris 298: 493–498Google Scholar
  34. Lonsdale, P. (1977). Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res. 24: 857–863Google Scholar
  35. McLean, J. H. (1981). The Galápagos Rift limpet Neomphalus: relevance to understanding the evolution of a major paleozoicmesozoic radiation. Malacologia 21 (1–2): 291–336Google Scholar
  36. Moorby, S. A. (1983). The geochemistry of transitional sediments recovered from the Galápagos hydrothermal mounds field during DSDP Leg 70-implications for mounds formation. Earth planet. Sci. Lett. 62: 367–376Google Scholar
  37. Moore, W. S., Vogt, P. R. (1975). Hydrothermal manganese crusts from two sites near the Galápagos spreading axis. Earth planet. Sci. Lett. 29: 349–356Google Scholar
  38. Rau, G. H. (1981a). Hydrothermal vent clam and tube worm 13C/12C: further evidence of non-photosynthetic food sources. Science, N.Y. 213: 338–339Google Scholar
  39. Rau, G. H. (1981b). Low 15N/14N in hydrothermal vent animals: ecological implications. Nature, Lond. 289: 484–485Google Scholar
  40. Rau, G., Hedges, J. I. (1979). Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, N.Y. 203: 648–649Google Scholar
  41. Smith, K. L., Jr. (1985). Deep-sea hydrothermal vent mussels: nutritional state and distribution at the Galápagos Rift. Ecology 66: 1067–1080Google Scholar
  42. Somero, G. N. (1984). Physiology and biochemistry of the hydrothermal vent animals. Oceanus 27 (3): 67–72Google Scholar
  43. Turekian, K. K., Cochran, J. K., Kharkar, D. P., Cerrato, R. M., Vainys, J. R., Sanders, H. L., Grassle, J. F., Allen, J. A. (1975). Slow growth rate of a deep sea-clam determined by 228Ra chronology. Proc. natn. Acad. Sci. U.S.A. 72: 2829–2832Google Scholar
  44. Turekian, K. K., Cochran, J. K., Nazaki, Y. (1979). Growth rate of a clam from the Galápagos rise hot spring field using natural radionuclide ratios. Nature, Lond. 280: 385–387Google Scholar
  45. Turner, R. D., Lutz, R. A. (1984). Growth and distribution of mollusks at deep sea vents and seeps. Oceanus 27(3): 55–62Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. R. Smith
    • 1
  • A. R. Flegal
    • 2
  1. 1.Department of BiologyUniversity of California at Santa CruzSanta CruzUSA
  2. 2.Institute of Marine SciencesUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations