Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Succession patterns of phytoplankton blooms: directionality and influence of algal cell size

  • 111 Accesses

  • 10 Citations


Using four replicate microcosms in the laboratory, we induced a phytoplankton bloom by enclosing a natural community sampled from Masnou Harbor (N.E. Spain) in November 1987, and examined the pattern of algal succession during the bloom. Good replicability of the temporal patterns of the community biomass and the abundance of most species demonstrated that succession was a directional, non-random process. The successional pathway observed (small flagellates » small centric diatoms » small flagellates) resembled that observed by other authors studying phytoplankton blooms. This pattern differed from previous models of algal succession in that dinoflagellates never comprised a substantial fraction of the community biomass, and in that algal cell size did not tend to increase along the successional sequence. Algal cell size, however, was an important determinant of phytoplankton community structure, since it constrained the density, but not the biomass, achievable by the different species. We suggest that there is not a single, general pattern of phytoplankton succession, but that distinction should be made, at least between seasonal and bloom patterns of phytoplankton succession.

This is a preview of subscription content, log in to check access.

Literature cited

  1. Agustí, S., Duarte, C. M., Kalff, J. (1987). Algal cell size and the maximum density and biomass of phytoplankton. Limnol. Oceanogr. 32: 983–986

  2. Bailey-Watts, A. E., Kirika, A. (1981). The assessment of size variations in Loch Leven phytoplankton: methodology and some of its uses in the study of factors influencing size. J. Plankton Res. 3: 261–282

  3. Brockmann, U. H., Eberlein, K., Hosumbek, P., Trageser, H., Maier-Reimer, E., Schöne, H. K., Junge, H. D. (1977). The development of a natural plankton population in an outdoor tank with nutrient-poor sea water. I. Phytoplankton succession. Mar. Biol. 43: 1–17

  4. Cooke, G. D. (1967). The pattern of autotrophic succession in laboratory microcosms. BioSci. 17: 717–721

  5. Duarte, C. M., Marrasé, C., Vaqué, D., Estrada, M. (1989). Counting error and the quantitative analysis of phytoplankton communities. (In preparation)

  6. Estrada, M., Alcaraz, M., Marrase, C. (1987). Effects of turbulence on the composition of phytoplankton assemblages in marine microcosms. Mar. Ecol. Prog. Ser. 38: 267–281

  7. Fuhrman, J., Eppley, R. W, Hagström, A., Azam, F. (1985). Diel variations in bacterioplankton, phytoplankton, and related parameters in the Southern California Bight. Mar. Ecol. Prog. Ser. 27: 8–20

  8. Harris, G. P. (1985). Phytoplankton ecology. Structure, function, and fluctuation. Chapman Hall, London

  9. Hulburt, E. M. (1983). The unpredictability of the marine phytoplankton. Ecology 64: 1157–1170

  10. Ishizaka, J., Takahashi, M., Ichimura, S. (1983). Evaluation of coastal upwelling effects on phytoplankton growth by simulated culture experiments. Mar. Biol. 76: 271–278

  11. Jassby, A. D., Goldman, C. R. (1974). A quantitative measure of succession rate and its application to the phytoplankton of lakes. Am. Nat. 108: 688–693

  12. Lewis, W. M. (1978). Analysis of succession in a tropical phytoplankton community and a measure of succession rate. Am. Nat. 112: 401–414

  13. Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In: Buzzti-Traverso, A. A. (ed.) Perspectives in marine biology. University of California Press, Berkeley, p. 323–349

  14. Margalef, R. (1967). The food web in the pelagic environment. Helgoländer wiss. Meeresunters. 15: 548–559

  15. Margalef, R. (1974). Asociación o exclusión de la distribución de especies del mismo género en algas unicelulares. Mems R. Acad. Cienc. Artes Barcelona 47: 353–372

  16. Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509

  17. Parsons, T. R., Harrison, P. J., Waters, R. R. (1978). An experimental simulation of changes in diatom and flagellate blooms. J. exp. mar. Biol. Ecol. 32: 285–294

  18. Semina, H. J. (1968). Water movements and the size of phytoplankton cells. Sarsia 34: 267–272

  19. Smayda, T. J. (1965). A quantitative analysis of the phytoplankton of the Gulf of Panamá. II. On the relationship between C14 assimilation and the diatom standing crop. Bull. inter-Am. trop. Tuna Commn. 9: 467–531

  20. Smayda, T. J. (1980). Phytoplankton species succession. In: Morris, I. (ed.) The physiological ecology of phytoplankton. Blackwell, London, p. 493–570

  21. Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can. 167: 1–310

  22. Thomas, W. H., Pollock, M., Seibert, D. L. R. (1980). Effects of simulated upwelling and oligotrophy on chemostat-grown natural marine phytoplankton assemblages. J. exp. mar. Biol. Ecol. 45: 25–36

  23. Travers, M. (1975). Le microplancton du golfe de Marseille: volume, surface et volume plasmique des organisms. Téthys 6: 689–712

  24. Vaulot, D., Olson, R. J., Merkel, S., Chisholm, S. W. (1987). Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii, and Hymenomonas carterae. Mar. Biol. 95: 625–630

  25. Yentsch, C. S., Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10: 221–231

  26. Yentsch, C. S., Ryther, J. H. (1957). Short-term variations in phytoplankton chlorophyll and their significance. Limnol. Oceanogr. 2: 140–142

Download references

Author information

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marrasé, C., Duarte, C.M. & Vaqué, D. Succession patterns of phytoplankton blooms: directionality and influence of algal cell size. Marine Biology 102, 43–48 (1989). https://doi.org/10.1007/BF00391321

Download citation


  • Phytoplankton
  • Dinoflagellate
  • Natural Community
  • Phytoplankton Community
  • Phytoplankton Bloom