, Volume 166, Issue 4, pp 515–523 | Cite as

Characterization of calcium fluxes across the envelope of intact spinach chloroplasts

  • G. Kreimer
  • M. Melkonian
  • J. A. M. Holtum
  • E. Latzko


Calcium fluxes across the envelope of intact spinach chloroplasts (Spinacia oleracea L.) in the light and in the dark were investigated using the metallochromic indicator arsenazo III. Light induces Ca2+ influx into chloroplasts. The action spectrum of light-induced Ca2+ influx and the inhibitory effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) indicate an involement of photosynthetic electron transport in this process. The driving force for light-induced Ca2+ influx is most likely a change in the membrane potential component of the proton motive force. This was demonstrated by the use of agents modifying the membrane potential (lipophilic cations, ionophores, different KCl concentrations). The activation energy of the observed Ca2+ influx is about 92 kJ mol-1. Verapamil and nifedipine, two Ca2+-channel blockers, have no inhibitory effect on light-induced Ca2+ influx, but enhance ferricyanide-dependent oxygen evolution. Inhibition of Ca2+ influx by ruthenium red reduces the light-dependent decrease in stromal NAD+ level.

Key words

Calcium channel blocker Calcium flux Chloroplast (Ca2+ flux) Membrane potential NAD+level Spinacia (chloroplast, calcium) 

Abbreviations and symbols






earbonyl cyanide p-trifluoromethoxyphenylhydrazone


3-phosphoglyceric acid


tetrabutylammonium chloride


tetraphenylphosphonium chloride


membrane potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15Google Scholar
  2. Barr, R., Troxel, K.S., Crane, F.L. (1983) A calcium-selective site in photosystem II of spinach chloroplasts. Plant Physiol. 73, 309–315Google Scholar
  3. Bernardi, P., Azzone, G.F. (1982) A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. FEBS Lett. 139, 13–16Google Scholar
  4. Bernardi, P., Azzone, G.F. (1983) Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur. J. Biochem. 134, 377–383Google Scholar
  5. Bulychev, A.A., Andrianov, V.K., Kurella, G.A., Litvin, F.F. (1972) Micro-electrode measurements of the transmembrane potential of chloroplasts and its photoinduced changes. Nature 236, 175–177Google Scholar
  6. Demmig, B., Gimmler, H. (1979) Effect of divalent cations on cation fluxes across the chloroplast envelope and on photosynthesis of intact chloroplasts. Z. Naturforsch. Teil C 34, 233–241Google Scholar
  7. Demmig, B., Gimmler, H. (1983) Properties of the isolated intact chloroplast at cytoplasmic K+ concentrations. I. Light-induced cation uptake into intact chloroplasts is driven by an electrical potential difference. Plant Physiol. 73, 169–174Google Scholar
  8. Enser, U., Heber, U. (1980) Metabolic regulation by pH gradients. Inhibition of photosynthesis by indirect proton transfer across the chloroplast envelope. Biochim. Biophys. Acta 592, 577–591Google Scholar
  9. Ferry, D.R., Glossmann, H. (1982) Identification of putative calcium channels in skeletal muscle microsomes. FEBS Lett. 148, 331–337Google Scholar
  10. Ferry, D.R., Rombusch, M., Goll, A., Glossmann, H. (1984) Photoaffinity labelling of Ca2+ channels with 3H azidopine. FEBS Lett. 169, 112–118Google Scholar
  11. Fliege, R., Flügge, U.-I., Werdan, K., Heldt, H.W. (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys. Acta 502, 232–247Google Scholar
  12. Gimmler, H., Schäfer, G., Heber, U. (1974) Low permeability of the chloroplast envelope towards cations. In: Proc. 3rd. Int. Congr. Photosynth., vol. 2, pp. 1381–1392, Avron, M., ed. Elsevier, AmsterdamGoogle Scholar
  13. Gross, E.L., Hess, S.C. (1974) Correlation between calcium ion binding to chloroplast membranes and divalent cation-induced structural changes and changes in chlorophyll a fluorescence. Biochim. Biophys. Acta 339, 334–346Google Scholar
  14. Heber, U., Heldt, H.W. (1981) The chloroplast envelope: structure, function, and role in leaf metabolism. Annu. Rev. Plant Physiol. 32, 139–168Google Scholar
  15. Heber, U., Santarius, K.A. (1965) Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim. Biophys. Acta 109, 390–408Google Scholar
  16. Heldt, H.W., Werdan, K., Milovancev, M., Geller, G. (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim. Biophys. Acta 314, 224–241Google Scholar
  17. Hertig, C., Wolosiuk, R.A. (1980) A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem. Biophys. Res. Commun. 97, 325–333Google Scholar
  18. Hetherington, A.M., Trewavas, A.J. (1984) Binding of nitrendipine, a calcium channel blocker, to pea shoot membranes. Plant Sci. Lett. 35, 109–113Google Scholar
  19. Jarrett, H.W., Brown, C.J., Black, C.C., Cormier, M.J. (1982) Evidence that calmodulin is in the chloroplast of peas and serves a regulatory role in photosynthesis. J. Biol. Chem. 257, 13795–13804Google Scholar
  20. Kelly, G.J., Zimmermann, G., Latzko, E. (1982) Fructosebisphosphatase from spinach leaf chloroplast and cytoplasm. Methods Enzymol. 90, 371–378Google Scholar
  21. Kreimer, G., Melkonian, M., Latzko, E. (1985) An electrogenic uniport mediates light-dependent Ca2+ influx into intact spinach chloroplasts. FEBS Lett. 180, 253–258Google Scholar
  22. Lehner, K., Heldt, H.W. (1978) Dicarboxylate transport across the inner membrane of the chloroplast envelope. Biochim. Biophys. Acta 501, 531–544Google Scholar
  23. Lehtonen, J. (1984) The significance of Ca2+ in the morphogenesis of Micrasterias studied with EGTA, verapamil, LaCl3 and calcium ionophore A23187. Plant Sci. Lett. 33, 53–60Google Scholar
  24. Lilley, R.McC., Fitzgerald, M.P., Reinits, K.G., Walker, D.A. (1975) Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol. 75, 1–10Google Scholar
  25. Lilley, R.McC. Walker, D.A. (1974) The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochim. Biophys. Acta 368, 269–278Google Scholar
  26. Marmé, D. (1983) Calcium transport and function. In: Encyclopedia of plant physiology, N.S., vol. 15B: Inorganic plant nutrition, pp. 599–625, Läuchli, A., Bieleski, R.L., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Matsumura, H., Miyachi, S. (1980) Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol. 69, 465–470Google Scholar
  28. Muto, S. (1982) Distribution of calmodulin within wheat leaf cells. FEBS Lett. 147, 161–164Google Scholar
  29. Muto, S., Izawa, S., Miyachi, S. (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett. 139, 250–254Google Scholar
  30. Muto, S., Miyachi, S., Usuda, H., Edwards, G.E., Bassham, J.A. (1981) Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves. Plant Physiol 68, 324–328Google Scholar
  31. Nakatani, H.Y. (1984) Inhibition of photosynthetic oxygen evolution by calmodulin-type inhibitors and other calcium-antagonists. Biochem. Biophys. Res. Commun. 121, 626–633Google Scholar
  32. Nicholls, D.G., Crompton, M. (1980) Mitochondrial calcium transport. FEBS Lett. 111, 261–268Google Scholar
  33. Ono, T., Inoue, Y. (1984) Ca2+-dependent restoration of O2-evolving activity in CaCl2-washed PS II particles depleted of 33, 24 and 16 kDA proteins. FEBS Lett. 168, 281–286Google Scholar
  34. Portis, A.R., Jr., Heldt, H.W. (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta 449, 434–446Google Scholar
  35. Roberts, D.M., Zielinski, R.E., Schleicher, M., Watterson, D.M. (1983) Analysis of suborganellar fractions from spinach and pea chloroplasts for calmodulin-binding proteins. J. Cell Biol. 97, 1644–1647Google Scholar
  36. Robinson, S.P. (1982) Transport of glycerate across the envelope membrane of isolated spinach chloroplasts. Plant Physiol. 70, 1032–1038Google Scholar
  37. Robinson, S.P. (1984) Lack of ATP requirement for light stimulation of glycerate transport into intact isolated chloroplasts. Plant Physiol. 75, 425–430Google Scholar
  38. Rosa, L., Whatley, F.R. (1984) Conditions required for the rapid activation in vitro of the chloroplast fructose-1,6-bisphosphatase. Plant Physiol. 75, 131–137Google Scholar
  39. Roux, S.J., Slocum, R.D. (1982) Role of calcium in mediating cellular functions important for growth and development in higher plants. In: Calcium and cell function, vol. 3, pp. 409–453, Cheung, W.Y., ed. Academic Press, London New YorkGoogle Scholar
  40. Scarpa, A. (1979) Measurements of cation transport with metallochromic indicators. Methods Enzymol. 56, 301–338Google Scholar
  41. Simon, P., Bonzon, M., Greppin, H., Marmé, D. (1984) Subchloroplastic localization of NAD kinase activity: evidence for a Ca2+, calmodulin-dependent activity at the envelope and for a Ca2+, calmodulin-independent activity in the stroma of pea chloroplasts. FEBS Lett. 167, 332–338Google Scholar
  42. Thomas, M.V. (1982) Techniques in calcium research, In: Biological techniques series, pp. 90–138, Treherne, J.E., Rubery, P.H. eds. Academic Press, London New YorkGoogle Scholar
  43. Walker, D.A. (1980) Preparation of higher plant chloroplasts. Methods Enzymol. 69, 94–104Google Scholar
  44. Williamson, R.E., Ashley, C.C. (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296, 647–651Google Scholar
  45. Wolosiuk, R.A., Hertig, C.M., Nishizawa, A.N., Buchanan, B.B. (1982) Enzyme regulation in C4 photosynthesis. Role of Ca2+ in thioredoxin-linked activation of sedoheptulose bisphosphatase from corn leaves. FEBS Lett. 140, 31–35Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • G. Kreimer
    • 1
  • M. Melkonian
    • 1
  • J. A. M. Holtum
    • 1
  • E. Latzko
    • 1
  1. 1.Botanisches Institut der Westfälischen Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations