Advertisement

Marine Biology

, Volume 98, Issue 2, pp 209–216 | Cite as

Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge

  • C. L. Van Dover
  • B. Fry
  • J. F. Grassle
  • S. Humphris
  • P. A. Rona
Article

Abstract

A newly described species of shrimp, Rimicaris exoculata Williams and Rona, 1986, dominates the megafaunal community at two hydrothermal vent sites on the Mid-Atlantic Ridge. Behavioral observations and gut-content analyses indicate, that these shrimp ingest large amounts of sulfide particles from black smoker chimneys. We found no evidence for chemoautotrophic endosymbionts in R. exoculata, based on analyses of morphology, stable isotopes, lipopolysaccharides, and ribulose-1,5-bisphosphate carboxylase (RuBPCase) activity. Instead we suggest that the shrimp, are normal heterotrophs, grazing on free-living microorganisms associated with black smoker chimneys. We infer that high bacterial productivity is required to sustain populations of R. exoculata at these vent sites.

Keywords

Sulfide Stable Isotope Bacterial Productivity Behavioral Observation Hydrothermal Vent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Baross, J. A., Deming, J. W. (1985). The role of bacteria in the ecology of black-smoker environments. Bull. biol. Soc. Wash. 6: 355–371Google Scholar
  2. Cavanaugh, C. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, Lond. 302: 58–61Google Scholar
  3. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213:340–342Google Scholar
  4. Dall, W., Moriarty, D. (1983). Functional aspects of nutrition and digestion. In: Mantel, L. H. (ed.) The biology of Crustacea, Vol. 5. Academic Press, New York, p. 215–261Google Scholar
  5. Detrick, R. S., Honnorez, J., Adamson, A. C., Brass, G. W., Gillis, K. M., Humphris, S. E., Mevel, C., Meyer, P. S., Petersen, N., Rautenschlein, M., Shibata, T., Staudigel, H., Wooldridge, A., Yamamoto, K. (1986a). Mid-Atlantic bare-rock drilling and hydrothermal vents. Nature, Lond. 321: 14–15Google Scholar
  6. Detrick, R. S., Honnorez, J., Adamson, A. C., Brass, G. W., Gillis, K. M., Humphris, S. E., Mevel, C., Meyer, P. S., Petersen, N., Rautenschlein, M., Shibata, T., Staudigel, H., Yamamoto, K., Wooldridge, A. (1986b) Drilling the Snake-Pit hydrothermal sulfide deposit on the Mid Atlantic Ridge, lat. 23°22'N. Geology (Boulder, Colorado) 14: 1004–1007Google Scholar
  7. Edmond, J., Campbell, A. C., Palmer, M. R., Klinkhammer, G. P. (1986). Preliminary report on the chemistry of hydrothermal fluids from the Mid-Atlantic Ridge. EOS Trans., Am. geophys. Un. 67: p. 1021Google Scholar
  8. Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213: 336–338Google Scholar
  9. Felgenhauer, B. E. Abele, L. G. (In press). Evolution of the foregut in the lower Decapoda. In: Felgenhauer, B. E., Watling, L., Thistle, A. D. (eds.) Feeding and grooming structures of selected Crustacea. Crustacean issues, Vol. 6. A. A. Balkema, RotterdamGoogle Scholar
  10. Fry, B. (1986). Increases in 15N and 13C as measures of food web structure in an offshore fishery. EOS Trans., Am. geophys. Un. 67: p. 988Google Scholar
  11. Fry, B., Gest, H., Hayes, J. M. (1983). Sulphur isotopic compositions of deep-sea hydrothermal vent animals. Nature, Lond. 306: 51–52Google Scholar
  12. Fry, B., Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. mar. Sci. Univ. Tex. 27: 13–47Google Scholar
  13. Grassle, J. F. (1986). The ecology of deep-sea hydrothermal vent communities. Adv. mar. Biol. 23: 301–362Google Scholar
  14. Grassle, J. F., Humphris S. E., Rona, P. A., Thompson, G., Van Dover, C. L. (1986). Animals at Mid-Atlantic Ridge hydrothermal vents. EOS Trans., Am. geophys. Un. 67: p. 1022Google Scholar
  15. Hobbie, J. E., Daley, R. J., Jasper, S. (1977). Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envirl Microbiol. 33: 1225–1228Google Scholar
  16. Huber, H., Huber, G., Stetter, K. O. (1985) A modified DAPI fluorescence staining procedure suitable for the visualization of lithotrophic bacteria. Syst. appl. Microbiol. 6: 105–106Google Scholar
  17. Jannasch, H. W. (1985). The chemosynthetic support of life and the microbial diversity at deep sea hydrothermal vents. Proc. R. Soc. (Ser. B) 225: 277–297Google Scholar
  18. Jannasch, H. W., Wirsen, C. O. (1981) Morphological survey of microbial mats near deep-sea hydrothermal vents. Appl. envirl Microbiol. 41: 528–538Google Scholar
  19. Karl, D., Wirsen, C., Jannasch, H. (1980). Deep-sea primary production at the Galapágos hydrothermal vents. Science, N.Y. 207: 1345–1347Google Scholar
  20. Minagawa, M., Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim. cosmochim. Acta 48: 1135–1140Google Scholar
  21. Minagawa, M., Winter, D., Kaplan, I. R. (1984). Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Analyt. Chem. 56: 1859–1861Google Scholar
  22. Miyake, Y., Wada, E. (1967). The abundance ratio of 15N/14N in marine environments. Rec. oceanogr. Wks Japan 9: 37–53Google Scholar
  23. Rau, G. H. (1982). The relationship between trophic level and stable isotopes of carbon and nitrogen. In: Bascom, W. (ed.) Coastal water research project, biennial report, 1981–1982. Southern California Coastal Water Research Project, Long Beach, California, p. 143–148Google Scholar
  24. Rau, G. H. (1985). 13C/12C and 15N/14N in hydrothermal vent organisms: ecological and biochemical implications. Bull. biol. Soc. Wash. 6: 243–247Google Scholar
  25. Rees, C. E., Jenkins, W. J., Monster, J. (1978). The sulphur isotopic composition of ocean water sulphate. Geochim. cosmochim. Acta 42: 377–381Google Scholar
  26. Rona, P. A. (1985). Black smokers and massive sulfides at the TAG hydrothermal field, Mid-Atlantic Ridge 26°N. EOS Trans., Am. geophys. Un. 66: p. 936Google Scholar
  27. Rona, P. A., Klinkhammer, G., Nelson, T. A., Trefry, J. H., Elderfield, H. (1986). Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, Lond. 321: 33–37Google Scholar
  28. Schroeder, B., Thompson, G., Humphris, S. E., Sulanowska, M. (1986). Hydrothermal mineralization, TAG area, Mid-Atlantic Ridge 26°N. EOS Trans., Am. geophys. Un. 67: p. 1022Google Scholar
  29. Smith, K. L. (1985). Macrozooplankton of a deep-sea hydrothermal vent: in situ rates of oxygen consumption Limnol. Oceanogr. 27: 461–471Google Scholar
  30. Sulanowska, M., Humphris, S. E., Thompson, G., Schroeder, B. (1986). Hydrothermal mineralization in the MARK area, Mid-Atlantic Ridge, 23°N. EOS Trans., Am. geophys. Un. 67: p. 1214Google Scholar
  31. Thompson, G., Humphris, S. E., Rona, P. E. (1986). Hydrothermal precipitates from a black smoker vent, TAG area, Mid-Atlantic Ridge 26°N. A. Mtg geol. Soc. Am. Abstr. 18: p. 772Google Scholar
  32. Watson, S. W., Novitsky, T. J., Quinby, H. L., Valois, F. W. (1977). Determination of bacterial number and biomass in the marine environment. Appl. envirl Microbiol. 33: 940–946Google Scholar
  33. Williams, A. B. (1987). More records for shrimps of the genus Rimicaris (Decapoda: Caridea: Bresiliidae) from the Mid-Atlantic Rift. J. Crustacean Biol. (Lawrence, Kansas) 7: p. 105Google Scholar
  34. Williams, A. B., Rona, P. A. (1986). Two new caridean shrimps (Bresiliidae) from a hydrothermal field on the Mid-Atlantic Ridge. J. Crustacean Biol. (Lawrence. Kansas) 6: p. 446–462Google Scholar
  35. Yanagisawa, F., Sakai, H. (1983). Thermal decomposition of barium-sulfate-vanadium pentaoxide — silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Analyt. Chem. 55: 985–987Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • C. L. Van Dover
    • 1
  • B. Fry
    • 2
  • J. F. Grassle
    • 1
  • S. Humphris
    • 1
  • P. A. Rona
    • 3
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Marine Biological LaboratoryEcosystems CenterWoods HoleUSA
  3. 3.NOAA/AOMLUS Department of CommerceMiamiUSA

Personalised recommendations