Marine Biology

, Volume 100, Issue 3, pp 411–418 | Cite as

Multiple trophic resources for a chemoautotrophic community at a cold water brine seep at the base of the Florida Escarpment

  • C. Cary
  • B. Fry
  • H. Felbeck
  • R. D. Vetter


The biological community that surrounds the hypersaline cold water brine seeps at the base of the Florida Escarpment is dominated by two macrofaunal species: an undescribed bivalve of the family Mytilidac and a vestimentiferan worm, Escarpia laminata. These animals are apparently supported by the chemoautotrophic fixation of carbon via bacterial endosymbionts. Water column and sediment data indicate that high levels of both sulfide and methane are present in surface sediments around the animals but absent from overlying waters. Stable isotopic analyses of pore water indicate that there are two sources of sulfide: the first is geothermal sulfide carried in groundwater leaching from the base of the escarpment, and the second is microbial sulfide produced in situ. The vestimentiferan E. laminata, and the mytilid bivalve (seep mussel) live contiguously but rely on different substrates for chemoautotrophy. Enzyme assays, patterns of elemental sulfur storage and stable isotopic analyses indicate that E. laminata relies on sulfide oxidation and the seep mussel on methane oxidation for growth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alperin, M. J., Reeburgh, W. S. (1984). Geochemical observations supporting anaerobic methane oxidation. In: Crawford, R. L., Hanson, R. S. (eds.) Microbial growth on C-1 compounds. pp. 282–289. R. L. American Society of Microbiologists. Washington D.C.Google Scholar
  2. Anthony, C., Zatman, L. J. (1965). The microbioal oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem. J. 96: 808–812Google Scholar
  3. Anthony, C. (1982). The biochemistry of metylotrophs. Academic Press, LondonGoogle Scholar
  4. Arp, A. J., Childress, J. J. (1983). Sulfide binding by the blood of the hydrothermal vent worm Riftia pachyptila Science, N.Y. 219: 295–297Google Scholar
  5. Arp, A. J., Childress, J. J., Fisher, C. R. Jr (1984). Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve Calyptogena magnifica. Physiol. Zool. 57: 648–662Google Scholar
  6. Arp, A. J., Childress, J. J., Fisher, C. R. Jr (1985) Blood gas transport in Riftia pachyptila. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. Biol. Soc. Wash. Bull. 6: 289–300Google Scholar
  7. Arp, A. J., Childress, J. J., Vetter, R. D. (1987). The sulfide-binding protein in the blood of the vestimentiferan tube-worm, Riftia pachyptila, is the extracellular hemoglobin. J. exp. Biol. 128: 139–158Google Scholar
  8. Brooks, J. M., Kennicutt, M. C. II, Fisher, C. R., Macko, S. A., Cole, K., Childress, J. J., Bidigare, R. R., Vetter, R. D. (1987). Deep-sea hydrocarbon seep communities: Evidence for energy and nutritional carbon. Science, N.Y. 238: 1138–1141Google Scholar
  9. Cary, S. C., Fisher, C. R., Felbeck, H. (1988). Mussel growth supported by methane as sole carbon and energy source. Science, N.Y. 240: 78–80Google Scholar
  10. Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, Lond. 302: 58–61Google Scholar
  11. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342Google Scholar
  12. Cavanaugh, C. M., Levering, R. R., Maki, J. S., Mitchell, R., Lidstrom, M. E. (1987). Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, Lond. 325: 346–348Google Scholar
  13. Childress, J. J., Mickel, T. J. (1982). Oxygen and sulfide consumption rates io the vent clam Calyptogena pacifica. Mar. Biol. Let. 3: 73–79Google Scholar
  14. Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, M. C. II, Bidigare, R. B., Anderson, A. E. (1986). A methanotrophic marine molluscan (Bivalvia: Mytilidae) symbiosis: mussels fueled by gas. Science, N.Y. 233: 1306–1308Google Scholar
  15. Childress, J. J., Arp, A. J., Fisher, C. R. (1984). Metabolic and respiratory characteristics of the hydrothermal vent tube worm Riftia pachyptila. Mar. Biol. 83: 109–124Google Scholar
  16. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., Sak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfates and their mutual interpretation. Chem. Geol. 28: 199–260Google Scholar
  17. Commeau, R. F., Paull, C. K., Commeau, J. A., Poppe, L. J. (1987). Pyrite mineralization at a passive margin sulfide brine seep: Abyssal Gulf of Mexico. Earth Plant. Sci. L. 82: 62–74Google Scholar
  18. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., van Andel, T. H. (1979). Submarine thermal springs on the Galapagos Rift. Science, N.Y. 203: 1073–1083Google Scholar
  19. Fahey, R. C., Newton, R. G. (1987). Determination of lowmolecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. In: Jacoby, W. B., Griffith, O. W. (eds.). Methods in Enzymology. 143: 85–95. Acad. Press: N.Y.Google Scholar
  20. Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213: 336–338Google Scholar
  21. Felbeck, H., Childress, J. J., Somero, G. N. (1981). Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphiderich habitats. Nature, Lond. 293: 291–293Google Scholar
  22. Felbeck, H., Liebezeit, G., Dawson, R., Giere, O. (1983). CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautrophic bacteria. Mar. Biol. 75: 187–191Google Scholar
  23. Fisher, C. R., Childress, J. J., Oremland, R. S., Bidigare, R. R. (1987). The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96: 59–71Google Scholar
  24. Fry, B., Gest, H., Hayes, J. M. (1983). Sulfur isotopic composition of deep-sea hydrothermal vent animals. Nature, Lond. 306: 51–52Google Scholar
  25. Fry, B., Sherr, E. B. (1984). 417-1 measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 13–47Google Scholar
  26. Hecker, B. (1985). Fauna from a cold sulfur-seep in the Gulf of Mexico: comparison with hydrothermal vent communities and evolutionary implications. In: The hydrothermal vents of the eastern pacific: an overview. Bull. Biol. Soc. Wash. 6: 465–473Google Scholar
  27. Hessler, R. R., Smithey, W. (1984). The distribution and community structure of megafauna at the Galapagos rift hydrothermal vents. NATO Conf. Ser. (Ser. IV: Mar. Sciences) 12: 735–770Google Scholar
  28. Lonsdale, P. F. (1977). Deep-tow observations at the Mounds abyssal hydrothermal fields. Galapagos Rift. Earth and Planetary Letters 36: 92–110Google Scholar
  29. McKellar, R. C., Sprott, G. D. (1979). Solubilization and properties of a particulate hydrogenase from Methanobacterium Strain G2R. J. Bacteriol. 139: 231–238Google Scholar
  30. Northfelt, D. W., Deniro, M. J., Epstein, S. (1981). Hydrogen and carbon isotopic ratios of the cellulose nitrate and saponifiable lipid fractions prepared from annual growth rings of a California redwood. Geochim. Cosmochim. Acta. 45: 1895–1898Google Scholar
  31. Orr, W. L. (1975). Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. In: Campos, R., Goni, J. (eds.). Advances in organic geochemistry, 7th International Meeting on Organic Geochemistry, pp. 571–597, Madrid: EnadismaGoogle Scholar
  32. Paull, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Newmann, C., Corso, W. P., Golubic, S., Hook, J. E., Sikes, E., Curray, J. (1984). Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science, N.Y. 226: 965–967Google Scholar
  33. Paull, C. K., Jull, A. J. T., Toolin, L. J., Linick, T. (1985). Stable isotope evidence for chemoautotrophy in an abyssal seep community. Nature, Lond. 317: 709–711Google Scholar
  34. Paull, C. K., Neumann, A. C. (1987). Continental margin brine seeps: Their geological consequences. Geology 15: 545–548Google Scholar
  35. Powell, M. A., Somero, G. N. (1985). Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol. Bull. 169: 164–181Google Scholar
  36. Powell, M. A., Somero, G. N. (1986). Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol. Bull. 171: 274–290Google Scholar
  37. Rau, G. H. (1981). Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food sources. Science, N.Y. 213: 338–340Google Scholar
  38. Reeburgh, W. S. (1967). An improved interstitial water sampler. Limnolog. Oceanogr. 12: 163–165Google Scholar
  39. Reeburgh, W. S. (1983). Rates of biogeochemical processes in anoxic sediments. Ann. Rev. Earth Planet. Sci. 11: 269–298Google Scholar
  40. Schedel, M., Trüper, H. (1980). Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch. Microbiol. 124: 205–210Google Scholar
  41. Southward, A. J., Southward, E. C., Dando, R. R., Rau, G. H., Felbeck, H., Ling, R. (1981). Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, Lond. 293: 616–620Google Scholar
  42. Spiess, R. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., Rangin, C. (1980). East Pacific Rise: Hot springs and geophysical experiments. Science, N.Y. 207: 1421–1433Google Scholar
  43. Stein, J. L., Cary, S. C., Hessler, R. R., Childress, J. J., Ohta, S. O., Vetter, R. D., Felbeck, H. (1988). Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol. Bull. 174: 373–378Google Scholar
  44. Stump, R. K., Frazer, J. W. (1973). Simultaneous determination of carbon, hydrogen, and nitrogen in organic compounds. Nucl. Sci. Abstr. 28: 746Google Scholar
  45. Vetter, R. D. (1985). Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound Mar. Biol. 88: 33–42Google Scholar
  46. Vetter, R. D., Wells, M. E., Kurtsman, A. L., Somero, G. N. (1987). Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiol. Zool. 60: 121–137Google Scholar
  47. Zyakun, A. M., Bondar, V. A., Namsaraev, B. B. (1981). Fractionation of methane carbon isotopes by methane-oxidizing bacteria. In: Forschungsheft C360, Reaktor der Bergakademie Freiberg. VEB Deutscher Verlag für Grundstoff Industrie, Leipzig. p. 19–27Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • C. Cary
    • 1
  • B. Fry
    • 2
  • H. Felbeck
    • 1
  • R. D. Vetter
    • 1
  1. 1.Marine Biology Research DivisionScripps Institution of OceanographyLa JollaUSA
  2. 2.Ecosystems Center Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations