, Volume 171, Issue 2, pp 259–265 | Cite as

Calcium binding by spinach stromal proteins

  • Georg Kreimer
  • Barbara Surek
  • Ian E. Woodrow
  • Erwin Latzko


Calcium binding to spinach (Spinacia oleracea L.) stromal proteins was examined by dual-wavelength spectrophotometry using the metallochromic indicator tetramethylmurexide. The data are consistent with the existence of at least two, probably independent, classes of binding sites. The total number of binding sites varied between 90–155 nmol·mg−1 protein with “average” binding constants of 1.1–2.7·mM−1. Both Mg2+ and La3+ inhibited calcium binding competitively, with “average” inhibitor constants of 0.26·mM−1 and 39.4·mM−1, respectively; an increase in the potassium concentration up to 50 mM had no effect. In a typical experiment a decrease in pH (7.8 to 7.1) resulted in a decrease in the total number of calcium binding sites from 90 to 59 nmol·mg−1 protein, but in an increase of the “average” affinity from 2.7 to 4.5·mM−1. Calculations, using these data and those of Gross and Hess (1974, Biochim. Biophys. Acta 339, 334–346) for binding site I of washed thylakoid membranes, showed that the free-Ca2+ concentration in the stroma under dark conditions, pH 7.1, is higher than under light conditions, pH 7.8. The physiological relevance of the observed calcium binding by stromal proteins is discussed.

Key words

Calcium (binding proteins) Chloroplast (stroma) Ionic regulation Photosynthesis Spinacia (calcium binding) 



bound calcium


free calcium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr, R., Troxel, K.S., Crane, F.L. (1983) A calcium-selective site in photosystem II of spinach chloroplasts. Plant Physiol. 73, 309–315Google Scholar
  2. Black, C.C. Jr., Brand, J.J. (1986) Roles of calcium in photosynthesis. In: Calcium and cell function, vol. 6, pp. 327–355, Cheung, W.Y., ed.. Academic Press, London New YorkGoogle Scholar
  3. Bouthyette, P.-Y., Jagendorf, A.T. (1981) Calcium inhibition of amino acid incorporation by pea chloroplasts and the question of loss of activity with age. In: Photosynthesis, vol. 5: Chloroplast development, pp. 599–609, Akoyunoglou, G., ed. Balaban International Science Services, PhiladelphiaGoogle Scholar
  4. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254Google Scholar
  5. Brown, L.M., Vanlerberghe, G.C. (1985) Structure-activity relations for inhibition of photosynthesis by calmodulin antagonists. Plant Sci. 41, 199–204Google Scholar
  6. Buc, J., Pradel, J., Meunier, J.-C., Soulié, J.-M., Ricard, J. (1980) The pH-induced dissociation of fructose 1,6-bisphosphatase of spinach chloroplasts. FEBS Lett. 113, 285–288Google Scholar
  7. Burkhard, R.K. (1982) Interactions of calcium with the pyridine nucleotides. Arch. Biochem. Biophys. 218, 207–212Google Scholar
  8. Charles, S.A., Halliwell, B. (1981) The role of calcium ions and the thioredoxin system in regulation of spinach chloroplast fructosebis phosphatase. Cell Calcium 2, 211–224Google Scholar
  9. Crouch, T.H., Klee, C.B. (1980) Positive cooperative binding of calcium to bovine brain calmodulin. Biochemistry 19, 3692–3698Google Scholar
  10. Davis, D.J., Gross, E.L. (1975) Protein-protein interactions of light-harvesting pigment protein from spinach chloroplasts. I. Ca2+ binding and its relation to protein association Biochim. Biophys. Acta. 387, 557–567Google Scholar
  11. Demmig, B., Gimmler, H. (1979) Effect of divalent cations on cation fluxes across the chloroplast envelope and on photosynthesis of intact chloroplasts. Z. Naturforsch. 34c, 233–241Google Scholar
  12. Dieter, P., Cox, J.A., Marmé, D. (1985) Calcium-binding and its effects on circular dichroism of plant calmodulin. Planta 166, 216–218Google Scholar
  13. Douce, R., Ioyard, J. (1982) Purification of the chloroplast envelope. In: Methods in chloroplast molecular biology, pp. 239–256, Edelman, M., Hallick, R.B., Chua, N.-H., eds. Elsevier, Amsterdam New York OxfordGoogle Scholar
  14. Evans, C.H. (1983) Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci., 8, 445–449Google Scholar
  15. Gilroy, S., Hughes, W.A., Trewavas, A.J. (1986) The measurement of intracellular calcium levels in protoplasts from higher plant cells. FEBS Lett. 199, 217–221Google Scholar
  16. Gontero, B., Meunier, J.-C., Buc J., Ricard, J. (1984) The ‘slow’ pH-induced conformational transition of chloroplast fructose-1,6-bisphosphatase and the control of the Calvin cycle. Eur. J. Biochem. 145, 485–488Google Scholar
  17. Gross, E.L., Hess, S.C. (1974) Correlation between calcium ion binding to chloroplast membranes and divalent cation-induced structural changes and changes in chlorophyll a fluorescence. Biochim. Biophys. Acta 339, 334–346Google Scholar
  18. Hertig, C., Wolosiuk, R.A. (1980) A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem. Biophys. Res. Commun. 97, 325–333Google Scholar
  19. Hertig, C.M., Wolosiuk R.A. (1983) Studies on the hysteretic properties of chloroplast fructose-1,6-bisphosphatase. J. Biol. Chem. 258, 984–989Google Scholar
  20. Jones, H., Halliwell, B. (1984) Calcium ion and calmodulin in pea chloroplasts as a function of plant age. Photobiochem. Photobiophys. 7, 293–297Google Scholar
  21. Kelly, G.J., Latzko, E., Gibbs, M. (1976) Regulatory aspects of photosynthetic carbon metabolism. Annu. Rev. Plant Physiol. 27, 181–205Google Scholar
  22. Klotz, I.M., Hunston, D.L. (1971) Properties of graphical representations of multiple classes of binding sites. Biochemistry 10, 3065–3069Google Scholar
  23. Kreimer, G., Melkonian, M., Holtum, J.A.M., Latzko, E. (1985) Characterization of calcium fluxes across the envelope of intact spinach chloroplasts. Planta 166, 515–523Google Scholar
  24. Mills, J.D., Barber, J. (1978) Fluorescence changes in isolated broken chloroplasts and the involvement of the electrical double layer. Biophys. J. 21, 257–272Google Scholar
  25. Moore, A.L., Åkerman, K.E.O. (1984) Calcium and plant organelles. Plant Cell Environ. 7, 423–429Google Scholar
  26. Muto, S., Izawa, S., Miyachi, S. (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett. 139, 250–254Google Scholar
  27. Nakatani, H.Y. (1984) Inhibition of photosynthetic oxygen evolution by calmodulin-type inhibitors and other calcium-antagonists. Biochem. Biophys. Res. Commun. 121, 626–633Google Scholar
  28. Nedler, J.A., Mead, R.C. (1965) A simplex method for function minimization. Computer J. 7, 308–316Google Scholar
  29. Ogawa, Y. (1985) Calcium binding to troponin c and troponin: Effects of Mg2+, ionic strength and pH. J. Biochem. 97, 1011–1023Google Scholar
  30. Ogawa, Y., Tanokura, M. (1984) Calcium binding to calmodulin: Effects of ionic strength, Mg2+, pH and temperature. J. Biochem. 95, 19–28Google Scholar
  31. Portis, A.R., Jr., Heldt, H.W. (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta 449, 434–446Google Scholar
  32. Prochaska, L.J., Gross, E.L. (1975) The effect of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide on calcium binding and associated changes in chloroplast structure and chlorophyll a fluorescence in spinach chloroplasts. Biochim. Biophys. Acta 376, 126–135Google Scholar
  33. Roux, S.J., Slocum, R.D. (1982) Role of calcium in mediating cellular functions important for growth and development in higher plants. In: Calcium and cell function, vol. 3, pp. 409–453, Cheung, W.Y., ed., Academic Press, London New YorkGoogle Scholar
  34. Schapendonk, Ad.H.C.M., Hermika-Wagner, A.M., Theuvenet, A.P.R., Wong Fong Sang, H.W., Vredenberg, W.J., Kraayenhof, R. (1980) Energy-dependent changes of the electrokinetic properties of chloroplasts. Biochemistry 19, 1922–1927Google Scholar
  35. Schürmann, P., Roux, J., Salvi, L. (1985) Modification of thioredoxin specificity of chloroplast fructose-1,6-bisphosphatase by substrate and Ca2+. Physiol. Vég. 23, 813–818Google Scholar
  36. Sparrow, R.W., England, R.R. (1984) Isolation of a calciumbinding protein from an oxygen-evolving photosystem II preparation. FEBS Lett. 177, 95–98Google Scholar
  37. Surek, B., Kreimer, G., Melkonian, M., Latzko, E. (1987) Spinach ferredoxin is a calcium binding protein. Planta, in pressGoogle Scholar
  38. Tew, W.P. (1977), Use of the coulombic interactions of the lanthanide series to identify two classes of Ca2+ binding sites in mitochondria. Biochem. Biophys. Res. Commun. 78, 624–630Google Scholar
  39. Wang, C.-L., Leavis, P.C., Horrocks, W.DeW., Jr., Gergely, J. (1981) Binding of lanthanide ions to troponin c. Biochemistry 20, 2439–2444Google Scholar
  40. Welinder, K.G. (1985) Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur. J. Biochem. 151, 497–504Google Scholar
  41. Williamson, R.W., Ashley, C.C. (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296, 647–651Google Scholar
  42. Wolff, D.J., Poirier, P.G., Brostrom, C.C., Brostrom, M.A. (1977) Divalent cation binding properties of bovine brain Ca2+ dependent regulator protein. J. Biol. Chem. 252, 4108–4117Google Scholar
  43. Wolosiuk, R.A., Hertig, C.M., Nishizawa, A.N., Buchanan, B.B. (1982) Enzyme regulation in C4 photosynthesis. Role of Ca2+ in thioredoxin-linked activation of sedoheptulose bisphosphatase from corn leaves. FEBS Lett. 140, 31–35Google Scholar
  44. Zanetti, G., Cidaria, D., Curti, B. (1982) Preparation of apoprotein from spinach ferredoxin-NADP+ reductase. Studies on the resolution process and characterization of the FAD reconstituted holoenzyme. Eur. J. Biochem. 126, 453–458Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Georg Kreimer
    • 1
  • Barbara Surek
    • 1
  • Ian E. Woodrow
    • 1
  • Erwin Latzko
    • 1
  1. 1.Botanisches Institut der Westfälischen Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations