Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and P. palmiformis

  • 142 Accesses

  • 42 Citations

Abstract

The alvinellid polychaetes Paralvinella pandorae Desbruyères and Laubier and P. palmiformis Desbruyères and Laubier occur at deep-sea hydrothermal vents along the Juan de Fuca and Explorer Ridges in the northeast Pacific Ocean. The population structure and reproductive biology of both species were studied in samples taken from three vent sites during six cruises in 1983 and 1984. Size-frequency analyses of two P. pandorae populations produced unimodal histograms, suggesting continuous or semi-continuous juvenile recruitment; in a third population two possible size classes were evident. Histograms of P. palmiformis displayed size-class peaks, which most likely reflected periodic recruitment of juveniles. Both species are gonochoric and gametes develop free in the coelom. Due to the simultaneous presence of a full range of gametogenic stages in P. pandorae populations, including spermatozoa in males, and to the continuous or semi-continuous recruitment pattern suggested by the size-frequency histograms, continuous reproduction is proposed for this species. In P. palmiformis a discrete, possibly synchronized, breeding cycle is thought to occur. Although maximum fecundity of P. pandorae is very low, continual reproduction over a long period of time could enhance its reproductive potential. The estimate of maximum fecundity for P. palmiformis is comparable to estimates for other polychaetes that undergo non-planktotrophic larval development. Maximum observed oocyte size was 215 and 260 μm in P. pandorae and P. palmiformis, respectively. It is proposed that P. pandorae broods its young, while P. palmiformis probably undergoes demersal lecithotrophic larval development. The continual production of brooded young by P. pandorae could maintain a vent population, but severely limit dispersal to other vents. Demersal lecithotrophic larvae of P. palmiformis could repopulate vents, and potentially be carried by bottom currents to other vent sites.

This is a preview of subscription content, log in to check access.

Literature cited

  1. Barnes, H. (1956). Balanus balanoides in the Firth of Clyde, the development and annual variation of the larval population and the causative factors. J. Anim. Ecol. 25: 72–84

  2. Berg, C. J., Jr. (1985). Reproductive strategies of mollusks from abyssal hydrothermal vent communities. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 185–197. (Bull. biol. Soc. Wash. No. 6)

  3. Berg, C. J., Jr., Turner, R. D. (1980). Description of living specimens of Calyptogena magnifica Boss and Turner with notes on their distribution and ecology. Appendix 1. In: Boss, K. J., Turner, R. D. (eds.) The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum. Malacologia 20: 183–185

  4. Billett, D. S. M., Hansen, B. (1982) Abyssal aggregations of Kolga hyalina D. and K. (Echinodermata: Holothuroidea) in the northeast Atlantic Ocean: a preliminary report. Deep-Sea Res. 29: 799–818

  5. Bouchet, P., Fontes, J.-C. (1981). Migrations verticales des larves de Gastéropodes abyssaux: arguments nouveaux dûl à l'analyse isotopique de la coquille larvaire et post larvaire. C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 292: 1005–1008

  6. Burke, R. D. (1983). The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can. J. Zool. 61: 1701–1719

  7. Cassie, R. M. (1954). Some uses of probability paper in the analysis of size-frequency distributions. Aust. J. mar. Freshwat. Res. 5: 513–525

  8. Cavanaugh, C. M. (1980). Symbiosis of chemoautotrophic bacteria and marine invertebrates. Biol. Bull. Marine Biology Lab., Woods Hole 159: p. 457 (Abstract)

  9. Cavanaugh, C. M. (1983). Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature, Lond. 302: 58–61

  10. Cavanaugh, C. M. (1985). Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 373–388. (Bull. biol. Soc. Wash. No. 6)

  11. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., Waterbury, J. B. (1981). Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science, N.Y. 213: 340–342

  12. Cazaux, C. (1982). Developpement larvaire de l'ampharetidae lagunaire Alkmaria romijni Horst 1919. Cah. Biol. mar. 23: 143–157

  13. Cerrato, R. M. (1980). Demographic analysis of bivalve populations. In: Rhoads, D. C., Lutz R. A. (eds.) Skeletal growth of aquatic organisms. Plenum Press, New York, p. 417–465

  14. Chia, F. S., Rice, M. E. (eds.) (1978) Settlement and metamorphosis of marine invertebrate larvae. Elsevier North Holland, New York, p. 1–290

  15. Christie, G. (1986). Observations on the reproductive biology of Trichobranchus glacialis Malmgren, 1886 (Polychaeta: Trichobranchidae). Sarsia 71: 259–265

  16. Clark, R. B. (1979). Environmental determination of reproduction in polychaetes. In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, S.C., p. 107–123

  17. Clavier, J. (1984). Description du cycle biologique d' Ampharete acutifrons (Grube, 1860) (Annélide Polychète). C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 299: 59–62

  18. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., van Andel, T. H. (1979). Submarine thermal springs on the Galapagos Rift. Science, N.Y. 203: 1073–1983

  19. Cuomo, M. C. (1985). Sulfide as a larval settlement cue for Capitella sp. 1. Biogeochemistry (Dordrecht) 1: 169–181

  20. Curtis, M. A., (1977). Life cycles and population dynamics of marine benthic polychaetes from the Disko Bay area of West Greenland. Ophelia 16: 9–58

  21. Desbruères, D., Gaill, F., Laubier, L, Fouquet, Y. (1985). Polychaetous annelids from hydrothermal vent ecosystems: an overview. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 103–116. (Bull. biol. Soc. Wash. No. 6)

  22. Desbruyères, D., Laubier, L. (1983). Primary consumers from hydrothermal vents animal communities. In: Rona, P. A., Boström, K., Laubier, L., Smith, K. L. (eds.) Hydrothermal processes at seafloor spreading centers. Plenum Press, New York, p. 711–734

  23. Desbruyères, D., Laubier, L. (1986). Les Alvinellidae, une famille nouvelle d'annélides polychètes inféodées aux sources hydrothermales sous-marins: systématiques, biologie et écologie. Can. J. Zool. 64: 2227–2245

  24. Dubilier, D. (1986). The role of sulfide in the settlement of Capitella sp. 1 larvae. Biol. Bull. Marine Biology Lab., Woods Hole 171: p. 497 (Abstract)

  25. Eckelbarger, K. J. (1974). Population biology and larval development of the terebellid polychaete Nicolea zostericola. Marine Biology 27: 101–113

  26. Fauchald, K., Jumars, P. A. (1977). Between community contrasts in successful polychaete feeding strategies. In: Coull, B. C. (ed.) Ecology of marine benthos. Georgetown, University of Carolina Press, p. 1–20

  27. Felbeck, H. (1981). Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science, N.Y. 213: 336–338

  28. Felbeck, H., Childress, J. J., Somero, G. N. (1981). Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphiderich habitats. Nature, Lond. 293: 291–293

  29. Fretter, V., Graham, A., McLean, J. H. (1981). The anatomy of the Galapagos Rift limpet, Neomphalus fretterae. Malacologia 21: 337–361

  30. Gibbs, P. E. (1971). A comparative study of reproductive cycles in four polychaete species belonging to the family Cirratulidae. J. Marine Biology Ass. U.K. 51: 745–769

  31. Grassle, J. F., Grassle, J. P. (1974). Opportunistic life histories and genetic systems in marine benthic polychaetes. J. mar. Res. 32: 253–284

  32. Gremare, A., Olive, P. W. (1986). A preliminary study of fecundity and reproductive effort in two polychaetous annelids with contrasting reproductive strategies. Int. J. Invertebrate Reprod. Dev. (Amsterdam) 9: 1–16

  33. Guillou, M., Hily, C. (1983). Dynamics and biological cycle of a Melinna palmata (Ampharetidae) population during the recolonization of a dredged area in the vicinity of the harbour of Brest (France). Marine Biology 73: 43–50

  34. Heffernan, P., O'Connor, B., Keegan, B. F. (1983). Population dynamics and reproductive cycle of Pholoë minuta (Polychaeta: Sigalionidae) in Galway Bay. Marine Biology 73: 285–291

  35. Hermans, C. O. (1979). Polychaete egg sizes, life histories and phylogeny. In: Stancyk, S. E. (ed.) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, S.C., p. 1–11

  36. Hessler, R. R., Smithey, W. M., Jr., Keller, C. H. (1985). Spatial and temporal variation of giant clams, tube worms and mussels at deep-sea hydrothermal vents. In: Jones, M. I. (ed.) Hydrothermal vents of the eastern pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 411–428. (Bull. biol. Soc. Wash. No. 6)

  37. Hutchings, P. A. (1973). Gametogenesis in a Northumberland population of the polychaete Melinna cristata. Marine Biology 18: 199–211

  38. Jannasch, H. W., Wirsen, C. O. (1979). Chemosynthetic primary production at East Pacific sea floor spreading centers. BioSci. 29: 592–598

  39. Lalou, C., Brichet, E. (1981). Possibilités de datation des dépôts de sulfures métalliques hydrothermaux sous-marins par les descendants à vie courte de l'uranium et du thorium. C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 293: 821–824

  40. Lalou, C., Brichet, E., Hekinian, R. (1985). Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50′N. Earth planet. Sci. Lett. 75 (1): 59–71

  41. LePennec, M., Hily, A., Lucas, A. (1984). Gonadiques particulières d'un mytilidae profund des sources hydrothermales du Pacifique oriental. C. r. hebd. Séanc. Acad Sci., Paris (sér. 3) 299: 725–730

  42. Lewis, J. R., Bowman, R. S. (1975). Local habitat-induced variations in the population dynamics of Patella vulgata. L. J. exp. Marine Biology Ecol. 17: 165–203

  43. Lutz, R. A., Jablonski, D., Rhoads, D. C. Turner, R. D. (1980). Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galápagos Rift. Marine Biology 57: 127–133

  44. Lutz, R. A., Jablonski, D., Turner, R. D. (1984). Larval development and dispersal at deep-sea hydrothermal vents. Science, N.Y. 226: 1451–1454

  45. MacDonald, K. C., Becker, K., Speiss, F. N., Ballard, R. D. (1980). Hydrothermal heat flux of the ‘black smoker’ vents on the East Pacific Rise. Earth planet. Sci. Lett. 48: 1–7

  46. Marinescu, V. P. (1964). La reproduction et la développement des polychètes reliques Ponto-Caspiens du Danube: Hypaniola kowalewskii (Grimm) et Manayunkia caspica. Revue roum. Biol. (série Zool.) 9: 87–100

  47. McHugh, D. (1987). The life-history patterns of two hydrothermal vent polychaetes, Paralvinella pandorae Desbruyères and Laubier and Paralvinella palmiformis Desbruyères and Laubier. M. Sc. thesis, University of Victoria

  48. McLean, J. (1981). The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Poleozoic-Mesozoic radiation. Malacologia 21: 291–336

  49. Nyholm, K.-G. (1951). Contributions to the life-history of the ampharetid, Melinna cristata. Zool. Bidr. Upps. 29: 79–93

  50. Okuda, S. (1937). On an ampharetid worm, Schistocomus sovjeticus Annenkova, with some notes on its larval development. J. Fac. Sci. Hokkaido imp. Univ. 9: 321–329

  51. Olive, P. J. W. (1970). Reproduction of a Northumberland population of the polychaete Cirratulus cirratus. Marine Biology 5: 259–273

  52. Olive, P. J. W. (1977). The life-history and population structure of the polychaetes Nephtys caeca and Nephtys hombergii, with special reference to the growth rings in the teeth. J. Marine Biology Ass. U.K. 57: 133–150

  53. Olive, P. J. W. (1984). Environmental control of reproduction in Polychaeta. In: Fischer, A., Pfannenstiel, H.-D. (eds.) Polychaete reproduction, progress in comparative reproductive biology. Gustav Fischer Verlag, Stuttagrt, New York, p. 17–39. (Fortschr. Zool. 29)

  54. Pearson, M., Gage, J. D. (1984). Diets of some deep-sea brittle stars in the Rockall Trough. Marine Biology 82: 247–258

  55. Pechenik, J. A. (1984a). The relationship between temperature, growth rate, and duration of planktonic life for larvae of the gastropod Crepidula fornicata (L.). J. exp. Marine Biology Ecol. 74: 241–257

  56. Pechenik, J. A. (1984b). Influence of temperature and temperature shifts on the development of chiton larvae, Mopalia muscosa. Int. J. Invertebrate Reprod. Dev. (Amsterdam) 7: 3–12

  57. Rokop, F. J. (1974). Reproductive patterns in the deep-sea benthos. Science, N.Y. 186: 743–745

  58. Rokop, F. J. (1977). Seasonal reproduction of the brachiopod Frieleia halli and the scaphopod Cadulus californicus at bathyal depths in the deep sea. Marine Biology 43: 237–246

  59. SAS Institute Inc. (1985). SAS/GRAPH® user's guide: basics. Version 5. SAS Institute Inc. Cary, North Carolina

  60. Scheltema, R. S. (1977). Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. In: Kauffman, E. G., Hazel, J. E. (eds.) Concepts and methods of biostratigraphy. Dowden, Hutchinson & Ross, Stroudsberg, Pennsylvania, p. 73–108

  61. Southward, A. J. (1967). Recent changes in abundance of intertidal barnacles in southwest England: a possible effect of climatic deterioration. J. Marine Biology Ass. U.K. 47: 81–95

  62. Southward, A. J., Crisp, D. J. (1956). Fluctuations in the distribution and abundance of intertidal barnacles. J. Marine Biology Ass. U.K. 35: 211–230

  63. Southward, E. C., Southward, A. J. (1958). The breeding of Arenicola ecaudata Johnston and A. branchialis Aud. and Edw. at Plymouth. J. Marine Biology Ass. U.K. 37: 267–286

  64. Stearns, S. C. (1976). Life-history tactics: a review of the ideas. Q. Rev. Biol. 51: 3–47

  65. Strathmann, R. R. (1978). The evolution and loss of feeding larval stages in marine invertebrates. Evolution, Lawrence, Kansas 32: 894–906

  66. Strathmann, R. R. (1985). Feeding and non-feeding larval development and life-history evolution in marine invertebrates. A. Rev. Ecol. Syst. 16: 339–361

  67. Strathmann, R. R., Vedder, K. (1977). Size and organic content of eggs of echinoderms and other invertebrates as related to developmental strategies and egg eating. Marine Biology 39: 305–309

  68. Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25: 1–45

  69. Tunnicliffe, V. (1988). Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proc. R. Soc. (Ser. B) 233: 347–366

  70. Tunnicliffe, V., Fontaine, A. R. (1987). Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan de Fuca Ridge. J. geophys. Res. 92: 11303–11314

  71. Tunnicliffe, V., Jensen, R. G. (1987). Distribution and behaviour of the spider crab Macroregonia macrochira Sakai (Brachyura) around the hydrothermal vents of the northeast Pacific. Can. J. Zool. 65: 2442–2449

  72. Tunnicliffer, V., Juniper, S. K., de Burgh, M. E. (1985). The hydrothermal vent community on Axial Seamount, Juan de Fuca Ridge. In: Jones, M. L. (ed.) Hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 453–464. (Bull. biol. Soc. Wash. No. 6)

  73. Turner, R. D. (1965). Some results on deep-water testing. A. Rep. Am. malac. Un. 17: 9–11

  74. Turner, R. D. (1981). Wood islands' and ‘thermal vents’ as centers of diverse communities in the deep-sea. Biol. Morya, Kiev 7: 3–10

  75. Turner, R. D., Lutz, R. A., Jablonski, D. (1985). Modes of molluscan larval development at deep-sea hydrothermal vents. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 167–184. (Bull. biol. Soc. Wash. No. 6)

  76. Tyler, P. A., Gage, J. D. (1980). Reproduction and growth in the deep-sea brittlestar Ophiura ljungmani (Lyman). Oceanol. Acta 3: 177–185

  77. Tyler, P. A., Gage, J. D. (1984a). Seasonal reproduction of Echinus affinis in the Rockall Trough, northeast Atlantic Ocean. Deep-Sea Res. 31: 387–402

  78. Tyler, P. A., Gage, J. D. (1984b). The reproductive biology of echinothuriid and cidarid sea urchins from the deep sea (Rockall Trough, North-East Atlantic Ocean). Marine Biology 80: 63–74

  79. Tyler, P. A., Gage, J. D., Billett, D. S. M.: (1985). Life-history biology of Peniagone azorica and P. diaphana (Echinodermata: Holothuroidea) from the north-east Atlantic Ocean. Marine Biology 89: 71–81

  80. Tyler, P. A., Pain, S. L., Gage, J. D., Billett, D. S. M. (1984). The reproductive biology of deep-sea forcipulate seastars (Asteroidea: Echinodermata) from the N. E. Atlantic Ocean, J. Marine Biology Ass. U.K. 64: 587–601

  81. Valderhaug, V. A. (1985). Population structure and production of Lumbrineris fragilis (Polychaeta: Lumbrineridae) in the Oslofjord (Norway) with a note on metal content of jaws. Marine Biology 86: 203–211

  82. Van Dover, C. L., Factor, J. R., Williams, A. B., Berg, C. J. (1985). Reproductive patterns of decapod crustaceans from hydrothermal vents. In: Jones, M. L. (ed.) The hydrothermal vents of the Eastern Pacific: an overview. INFAX Corporation, Vienna, Virginia, p. 223–227. (Bull. biol. Soc. Wash. No. 6)

  83. Van Praët, M., Duchateau, G. (1984). Mise en évidence chez une actinie abyssale (Paracalliactis stephensoni) d'un cycle saisonnier de reproduction. C. r. hebd. Séanc. Acad Sci., Paris (sér.) 299: 687–690

  84. Warwick, R. M., Georges, C. L., Davies, J. R. (1978). Annual macrofauna production in a Venus community. Estuar. cstl mar. Sci. 7: 215–241

  85. Zottoli, R. A. (1974). Reproduction and larval development of the ampharetid polychaete Amphicteis floridus. Trans. Am. microsc. Soc. 93 (1): 78–89

  86. Zottoli, R. A. (1983). Amphisamytha galapagensis, a new species of ampharetid polychaete from the vincinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. Proc. biol. Soc. Wash. 96: 379–391

Download references

Author information

Additional information

Communicated by P. C. Schroeder, Pullman

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McHugh, D. Population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and P. palmiformis . Marine Biology 103, 95–106 (1989). https://doi.org/10.1007/BF00391068

Download citation

Keywords

  • Polychaete
  • Larval Development
  • Reproductive Biology
  • Hydrothermal Vent
  • Bottom Current