Advertisement

Marine Biology

, Volume 57, Issue 3, pp 165–179 | Cite as

The megabenthic fauna in the deep sea south of New England, USA

  • R. L. Haedrich
  • G. T. Rowe
  • P. T. Polloni
Article

Abstract

Data from 105 benthic trawls made in an area south of New England, USA between 40 and 5000 m show the fauna to be zoned with depth, areas of rapid faunal change separating regions of relative faunal homogeneity. Distinct faunal assemblages with characteristic catch rates, diversity, and dominant species are found on the shelf (40 to 264 m), upper continental slope (283 to 650 m), middle continental slope (653 to 1290 m), lower continental slope (1380 to 1947 m), the transitional region from slope to rise (2116 to 2481 m), the upper continental (2504 to 3113 m), the middle continental rise (3244 to 3470 m), and lower continental rise to abyssal plain (3879 to 4986 m). Catch rates and diversity are greatest on the lower continental slope and transition to the upper rise, and are lowest at the greatest depths. Dominance, particularly by echinoderms, is an important aspect of community structure. The 3 major taxa represented (decapod crustaccean, echinoderms, and fishes) do not always display the same patterns within and between assemblages. Generalities derived from study of a single group need not apply to all segments of the deep-ocean community. Overall patterns in the megafauna are similar to those described in other groups and areas, but species assemblages are not the same everywhere and perhaps too much has been made of the horizontal extent of zones. Trophic level is related to degree of zonation, but where predators are generalists their ranges may be wide rather than restricted. Diversity patterns can be understood in terms of the interrelationships of predation, competition, environmental heterogeneity, and trophic level. Faunal zones are of importance as the geographical units within which evolution, community development, and diversification take place.

Keywords

Trophic Level Continental Slope Catch Rate Faunal Assemblage Transitional Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Backus, R. H., G. W. Mead, R. L. Haedrich and A. W. Ebeling: The mesopelagic fishes collected during cruise 17 of the R/V Chain with a method for analyzing faunal transects. Bull. Mus. comp. Zool. Harv. 134, 139–158 (1965)Google Scholar
  2. Bell, S. S. and B. C. Coull: Field evidence that shrimp predation regulates meiofauna. Oecologia (Berl.) 35, 141–148 (1978)Google Scholar
  3. Bernstein, B. B., R. R. Hessler, R. Smith and P. A. Jumars: Spatial dispersion of benthic foraminifera in the abyssal central North Pacific. Limnol. Oceanogr. 23, 401–416 (11978)Google Scholar
  4. Bullis, H. R., Jr. and R. Cummins, Jr.: Another lood at the royal red shrimp resource. Proc. Gulf. Caribb. Fish. Inst. 15th ann. Sess., 9–12 (1963)Google Scholar
  5. Campbell, R. A., R. L. Haedrich and T. A. Munroe: Parasitism and ecological relationships among deep-sea benthic fishes. Mar. Biol. (In press). (1980)Google Scholar
  6. Carey, A. G., Jr.: Food sources of sublittoral bathyal and abyssal asteroids in the northeast Pacific Ocean. Ophelia 10, 35–47 (1972)Google Scholar
  7. Carney, R. S. and A. G. Carey, Jr.: Distribution pattern of holothurians on the Northeastern Pacific (Oregon, U.S.A.) continental shelf, slope, and abyssal plain. Thalassia jugosl. 12(1), 67–74 (1976)Google Scholar
  8. Ceramé-Vivas, M. J. and I. E. Gray: The distributional pattern of benthic invertebrates of the continental shelf off North Carolina. Ecology 47, 260–270 (1966)Google Scholar
  9. Connell, J. H.: A predator-prey system in the marine intertidal region. I. Balanus glandula and several predatory species of Thais. Ecol. Monogr. 40, 48–78 (1970)Google Scholar
  10. Connell, J. H.: Diversity in tropical rain forests and coral reefs. Science, N.Y. 199, 1302–1310 (1978)Google Scholar
  11. Coull, B. C.: Species diversity and faunal affinities of meiobenthic Copepoda in the deep sea. Mar. Biol. 14, 48–51 (1972)Google Scholar
  12. Cutler, E. B.: Zoogeographical barrier on the continental slope off Cape Lookout, North Carolina. Deep-Sea Res. 22, 893–901 (1975)Google Scholar
  13. Dauer, D. M. and J. L. Simon: Lateral or along-shore distribution of the polychaetous annelids of an intertidal, sandy habitat. Mar. Biol. 31, 363–370 (1975)Google Scholar
  14. Day, D. S. and W. G. Pearcy: Species associations of benthic fishes on the continental shelf and slope off Oregon. J. Fish. Res. Bd Can. 25, 2665–2675 (1968)Google Scholar
  15. Dayton, P. K. and R. R. Hessler: Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res. 19, 199–209 (1972)Google Scholar
  16. Dickinson, J. J. and A. G. Carey, Jr.: Distribution of gammarid Amphipoda (Crustacea) on Cascadia Abyssal Plain (Oregon). Deep-Sea Res. 25, 97–106 (1978)Google Scholar
  17. Du Buit, M. H.: Alimentation de quelques poissons téléostéens de profondeur dans la zone du seil de Wyville Thomson. Oceanol. Acta 1, 129–134 (1978)Google Scholar
  18. Gardiner, F. P. and R. L. Haedrich: Zonation in the deep benthic megafauna; application of a general test. Oecologia (Berl.) 31, 311–317 (1978)Google Scholar
  19. Gray, J. S.: Animal-sediment relationships. Oceanogr. mar. Biol. A. Rev. 12, 223–261 (1974)Google Scholar
  20. Haedrich, R. L. and N. R. Henderson: Pelagic food of Coryphaenoides armatus, a deep bethic rattail. Deep-Sea Res. 21, 739–744 (1974)Google Scholar
  21. Haedrich, R. L. and G. Krefft: Distribution of bottom fishes in the Denmark Strait and Irminger Sea. Deep-Sea Res. 25, 705–720 (1978)Google Scholar
  22. Haedrich, R. L. and P. T. Polloni: A contribution to the life history of a small rattail fish, Coryphaenoides carapinus. Bull. Sth. Calif. Acad. Sci. 75, 203–211 (1976)Google Scholar
  23. Haedrich, R. L., G. T. Rowe and P. T. Polloni: Zonation and faunal composition of epibenthic populations on the continental slope south of New England. J. mar. Res. 33, 191–212 (1975)Google Scholar
  24. Hazel, J. E.: On the use of cluster analysis in biogeography. Syst. Zool. 21, 240–242 (1972)Google Scholar
  25. Hessler, R. R. and P. A. Jumars: Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res. 21, 185–209 (1974)Google Scholar
  26. Hubbell, S. P.: Tree dispersion, abundance and diversity in a tropical dry forest. Science, N.Y. 203, 1299–1309 (1979)Google Scholar
  27. Jumars, P. A.: Environmental grain and polychaete species diversity in a bathyal benthic community. Mar. Biol. 30, 253–266 (1975)Google Scholar
  28. Jumars, P. A.: Deep-sea species diversity: does it have a characteristic scale? J. mar. Res. 34, 217–246 (1976)Google Scholar
  29. Jumars, P. A. and K. Fauchald: Between-community contrasts in successful polychaete feeding strategies. In: Ecology of marine benthos, pp 1–20. Ed. by B. C. Coull. Columbia, S. C.: University of South Carolina Press 1977Google Scholar
  30. Kohn, A. J.: Diversity, utilization of resources, and adaptive radiation in shallow-water marine invertebrates of tropical oceanic islands. Limnol. Oceanogr. 16, 332–348 (1971)Google Scholar
  31. Lagardére, J. P.: Recherches sur le régime alimentaire et le comportement prédateur dés decapodes benthiques de la pente continentale de l'Atlantique Nord oriental (Golfe de Gascogne et Maroc). In: Biology of benthic organisms, pp 397–408. Ed. by B. F. Keegan, P. O. Ceidigh and P. J. S. Boaden. New York: Pergamon Press 1977Google Scholar
  32. Le Danois, E.: Les profondeurs de la mer, 303 pp. Paris: Payot 1948Google Scholar
  33. Lloyd, M. and R. J. Ghelardi: A table for calculating the equitability component of species diversity. J. Anim. Ecol. 33, 217–225 (1964)Google Scholar
  34. Markle, D. F. and J. A. Musick: Benthic-slope fishes found at 900m depth along a transect in the Western N. Atlantic Ocean. Mar. Biol. 26, 225–233 (1974)Google Scholar
  35. Marshall, N. B. and N. R. Merrett: The existence of a benthopelagic fauna in the deep sea. In: A voyage of discovery: George Deacon 70th Anniversary Volume, pp 483–497. Ed. by M. Angel. Oxford: Pergamon Press Ltd. 1977Google Scholar
  36. McLellan, T.: Feeding strategies of the macrourids. Deep-Sea Res. 24, 1019–1036 (1977)Google Scholar
  37. Menge, B. A. and J. P. Sutherland: Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. Am. Nat. 110 351–369 (1976)Google Scholar
  38. Menzies, R. J., R. Y. George and G. T. Rowe: Abyssal environment and ecology of the world oceans, 488 pp. New York: John Wiley & Sons, Inc. 1973Google Scholar
  39. Mills, E. L.: T. R. R. Stebbing, the Challenger and knowledge of deep-sea Amphipoda. Proc. R. Soc. Edinb. (Sect. B) 72, 67–87 (1972)Google Scholar
  40. Murphy, L. S., G. T. Rowe and R. L. Haedrich: Genetic variability in deep-sea echinoderms. Deep-Sea Res. 23, 339–348 (1976)Google Scholar
  41. Musick, J. A.: Community structure of fishes on the continental slope and rise off the Middle Atlantic Coast of the U.S. Manuscript presented at Joint Oceanographic Assembly, Edinburgh, September, 1976. (Copies available from: J. A. Musick, Virginia Institute of Marine Science, Gloucester Point, Virginia 23062, USA)Google Scholar
  42. Paine, R. T.: Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966)Google Scholar
  43. Pearcy, W. G. and J. W. Ambler: Food habits of deep-sea macrurid fishes off the Oregon coast. Deep-Sea Res. 21, 745–759 (1974)Google Scholar
  44. Peters, J. A.: A new approach in the analysis of biogeographic data. Smithson. Contr. Zool. 107, 1–28 (1971)Google Scholar
  45. Peters, R. H.: Tautology in evolution and ecology. Am. Nat. 110 1–12 (1976)Google Scholar
  46. Pielou, E. C.: The measurement of diversity in different types of biological collections. J. theor. Biol. 13, 131–144 (1966)Google Scholar
  47. Pielou, E. C. and R. D. Routledge: Salt marsh vegetation: latitudinal gradients in the zonation patterns. Oecologia (Berl.) 24, 311–321 (1976)Google Scholar
  48. Polloni, P. T., R. L. Haedrich, G. T. Rowe and C. H. Clifford: The size-depth relationship in deep-ocean animals. Int. Revue ges. Hydrobiol. 64, 39–46 (1979)Google Scholar
  49. Rex, M. A.: Deep-sea species diversity: decreased gastropod diversity at abyssal depths. Science, N.Y. 181, 1051–1052 (1973)Google Scholar
  50. Rex, M. A.: Biological accommodation in the deep-sea benthos: comparative evidence on the importance of predation and productivity. Deep-Sea Res. 23, 975–987 (1976)Google Scholar
  51. Rex, M. A.: Zonation in deep-sea gastropods: the importance of biological interactions to rates of zonation. In: Biology of benthic organisms pp 521–530. Ed. by B. F. Keegan, P. O. Ceidigh and P. J. S. Boaden. New York: Pergamon Press 1977Google Scholar
  52. Rex, M. A.: Geographical ecology of the deep-sea benthos. Oceanogr. mar. Biol. Rev. (In press)Google Scholar
  53. Rowe, G. T. and R. J. Menzies: Zonation of large benthic invertebrates in the deep sea off the Carolinas. Deep-Sea Res. 16, 531–537 (1969)Google Scholar
  54. Rowe, G. T., P. T. Polloni and R. L. Haedrich: Infaunal benthic community structure in the Hudson Submarine Canyon system and adjacent continental margin. (In preparation)Google Scholar
  55. Sanders, H. L.: Marine benthic diversity: a comparative study. Am. Nat. 102, 243–283 (1968)Google Scholar
  56. Schoener, A. and G. T. Rowe: Pelagic Sargassum and its presence among the deep-sea benthos. Deep-Sea Res. 17, 923–925 (1970)Google Scholar
  57. Sedberry, G. R. and J. A. Musick: Feeding strategies of some demersal fishes of the continental slope and rise off the mid-Atlantic Coast of the USA. Mar. Biol. 44, 357–375 (1978)Google Scholar
  58. Sepkoski, J. J.: Quantified coefficients of association and measurement of similarity. J. int. Ass. math. Geol. 6, 135–152 (1974)Google Scholar
  59. Shannon, C. E. and W. Weaver: The mathematical theory of communication, 117 pp. Urbana: University of Illinois Press 1963Google Scholar
  60. Siebenaller, J. and G. N. Somero: Pressure-adaptive differences in lactate dehydrogenases of congeneric fishes living at different depths. Science, N. Y. 201, 255–257 (1978)Google Scholar
  61. Smith, K. L., Jr.: Benthic community respiration in the N.W. Atlantic Ocean: in situ measurements from 40 to 5200 m. Mar. Biol. 47, 337–347 (1978)Google Scholar
  62. Sokolova, M. N.: On the distribution of deep-water bottom animals in relation to their feeding habits and the character of sedimentation. Deep-Sea Res. 6, 1–4 (1959)Google Scholar
  63. Sokolova, M. N.: Trophic structure of deep-sea macrobenthos. Mar. Biol. 16, 1–12 (1972)Google Scholar
  64. Terborgh, J.: Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 52, 23–40 (1971)Google Scholar
  65. Thiel, Hj.: The size structure of the deep-sea benthos. Int. Revue ges. Hydrobiol. 60, 575–606 (1975)Google Scholar
  66. Thistle, D.: Harpacticoid dispersion patterns: implications for deep-sea diversity maintenance. J. mar. Res. 36, 377–397 (1978)Google Scholar
  67. Turner, R.: Wood-boring bivalves: opportunistic species in the deep sea. Science, N.Y. 180, 1377–1379 (1973)Google Scholar
  68. Valentine, J. W.: Genetic strategies of adaptation. In: Molecular Evolution, Chapter 5, pp 78–94. Ed. by F. J. Ayala. Sunderland, Massachusetts: Sinauer Associates, Inc. 1976Google Scholar
  69. Vinogradova, N. G.: Vertical zonation in the distribution of the deep-sea benthic fauna in the ocean. Deep-Sea Res. 8, 245–250 (1962)Google Scholar
  70. Whittaker, R. H. and C. W. Fairbanks: A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecol. Monogr. 22, 1–44 (1958)Google Scholar
  71. Wigley, R. L. and K. O. Emery: Benthic animals, particularly Hyalinoecia (Annelida) and Ophiomusium (Echinodermata), in sea-bottom photographs from the continental slope. In: Deep-sea photography, pp 235–249. Ed. by J. B. Hersey. Baltimore, Md: The Johns Hopkins Press 1967Google Scholar
  72. Woodin, S. A.: Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions. Ecol. Monogr. 44, 171–187 (1974)Google Scholar
  73. Woodin, S. A.: Adult-larval interactions in dense infaunal assemblages: patterns of abundance. J. mar. Res. 34, 25–41 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • R. L. Haedrich
    • 1
  • G. T. Rowe
    • 2
  • P. T. Polloni
    • 3
  1. 1.Memorial University of NewfoundlandSt. John'sCanada
  2. 2.Brookhaven National LaboratoryUptonUSA
  3. 3.North FalmouthUSA

Personalised recommendations