Marine Biology

, Volume 45, Issue 3, pp 255–260 | Cite as

Influence of temperature on the reproductive potential of Oncholaimus oxyuris (Nematoda: Oncholaimidae)

  • C. Heip
  • N. Smol
  • V. Absillis


The large nematode Oncholaimus oxyuris Ditlevsen, 1911 is a dominant predator in a shallow polyhaline brackish-water pond in Belgium. The reproductive potential of this species was calculated as the intrinsic rate of natural increase r=1/D In pN e , in which D is the generation time, p is the percentage of females, and N e is the number of eggs per female. The generation time varies between 570 days at 5°C and 101 days at 25°C and is the main factor in the determination of r. The relationship between r and temperature is nearly linear and is given by r=0.0013 T−0.0042. The reproductive potential of O. oxyuris is much lower than would be predicted from body size; this and the dominance of males in the population, is discussed in the light of the evolution of stable predator-prey systems.


Body Size Generation Time Reproductive Potential Intrinsic Rate Natural Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, K.R.: Relation between production and biomass. J. Fish. Res. Bd Can. 28, 1573–1581 (1971)Google Scholar
  2. De Bovée, F.: La nematofauna des vases autopolluées des Iles Kerguelen (terres australes et antaractiques françaises). Cah. Biol. mar. 16, 711–720 (1975)Google Scholar
  3. Caughley, G. and L. C. Bird: Rate of increase. J. Wildl. Mgmt 35, 658–663 (1971)Google Scholar
  4. Fenchel, T.: Intrinsic rate of natural increase: the relationship with body size. Oecologia (Berl.) 14, 317–326 (1974)Google Scholar
  5. Fisher, R.A.: The genetical theory of natural selection, 272 pp. Oxford: Clarendon Press 1930Google Scholar
  6. Gerlach, S.A.: On the importance of marine meiofauna for benthos communities. Oecologia (Berl.) 6, 176–190 (1971)Google Scholar
  7. — and M. Schrage: Life cycles in marine meiobenthos. Experiments at various temperatures with Monhystera disjuncta and Theristus pertenuis (Nematoda). Mar. Biol. 9, 274–280 (1971)Google Scholar
  8. —— Life cycles at low temperatures in some freeliving marine nematodes. Veröff. Inst. Meeresforsch Bremerh. 14, 5–11 (1972)Google Scholar
  9. Heip, C.: The life cycle of Cyprideis torosa (Crustacea, Ostracoda). Oecologia (Berl.) 24, 229–245 (1976)Google Scholar
  10. —: On the evolution of reproductive potentials in a brackish water meiobenthic community. Mikrofauna Meeresboden 61, 105–112 (1977)Google Scholar
  11. — and W. Decraemer: The diversity of nematode communities in the southern North Sea. J. mar. biol. Ass. U.K. 54, 251–255 (1974)Google Scholar
  12. — and N. Smol: Influence of temperature on the reproductive potential of two brackish-water harpacticoids (Crustacea: Copepoda). Mar. Biol. 35, 327–334 (1976)Google Scholar
  13. Hopper, B.E., J. W. Fell and R.C. Cefalu: Effect of temperature on life cycles of nematodes associated with the mangrove (Rhizophora mangle) detrital system. Mar. Biol. 23, 293–296 (1973)Google Scholar
  14. Juario, J.V.: Nematode species composition and seasonal fluctuation of a sublittoral meiofauna community on the German Bight. Veröff. Inst. Meeresforsch. Bremerh. 15, 283–337 (1975)Google Scholar
  15. Maertens, D.: Observations on the life cycle of Prionchulus punctatus (Cobb, 1917) (Nematoda) and some culture conditions. Biol. Jaarb. 43, 197–218 (1975)Google Scholar
  16. May, R.M.: Estimating r: a pedagogical note. Am. Nat. 110, 496–499 (1976)CrossRefGoogle Scholar
  17. Ott, J.A.: Studies on the diversity of the nematode fauna in intertidal sediments. Proc. Eur. mar. biol. Symp. 5, 275–285 (1972)Google Scholar
  18. Paine, R.T.: Food wed complexity and species diversity. Am. Nat. 100, 65–76 (1966)CrossRefGoogle Scholar
  19. Tenore, K.R., J.H. Tietjen and J.J. Lee: Effect of meiofauna on incorporation of aged eelgrass, Zostera marina, detritus by the polychaete Nephtys incisa. J. Fish. Res. Bd Can. 34, 563–567 (1977)Google Scholar
  20. Tietjen, J.H. and J.J. Lee: Life cycles of marine nematodes. Influence of temperature and salinity on the development of Monhystera denticulata Timm. Oecologia (Berl.) 10, 167–176 (1972)Google Scholar
  21. —— Life histories of marine nematodes. Influence of temperature and salinity on the reproductive potential of Chromadorina germanica Bütschli. Mikrofauna Meeresbod. 61, 263–270 (1977).Google Scholar
  22. ——, J. Rullman, A. Greenhart and J. Trompeter: Gnotobiotic culture and physiological ecology of the marine nematode Rhabditis marina Bastian. Limnol. Oceanogr. 15, 535–543 (1970)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • C. Heip
    • 1
    • 2
  • N. Smol
    • 1
  • V. Absillis
    • 1
  1. 1.Department of ZoologyState University of GentGentBelgium
  2. 2.Laboratorium voor Morfologie en SystematiekGentBelgium

Personalised recommendations