Advertisement

Marine Biology

, Volume 45, Issue 2, pp 97–104 | Cite as

On the ability of Anemonia sulcata (Coelenterata: Anthozoa) to absorb charged and neutral amino acids simultaneously

  • D. Schlichter
Article

Abstract

Reciprocal inhibition experiments concerning the simultaneous absorption of acidic, basic and neutral amino acids give evidence that Anemonia sulcata Pennant (Coelenterata: Anthozoa) possess at least three distinct uptake systems for amino acids. The absorption of amino acids belonging to the same class is mutually inhibited. Increasing inhibitor concentrations reduce the uptake of the substrate successively, indicating that the receptors are saturated only at high substrate concentrations; this is not the case under natural conditions. The uptake system for acidic amino acids is highly specific; uptake is not inhibited by either basic or neutral amino acids. The specificity for basic amino acids is lower; uptake is influenced by neutral amino acids. Neutral amino acids are absorbed either by one single system with broad specificity or by several systems with overlapping specificity. D- and L-isomers seem to be absorbed by the same system, as the uptake is reciprocally inhibited. The restricted specificity of the amino-acid uptake systems, especially those for neutral amino acids, could be explained as an adaptation to avoid accumulation of certain amino acids in a most economic way. Moreover, a broad spectrum of various dissolved organic materials can thus be utilized. The experiments also give evidence that anemones are able to supply their metabolism completely with the necessary substances by absorbing dissolved organic material. The absorbed substances may, furthermore, be vital for the metabolism, although their individual energy content may be negligible. Anemones display optimum fitness to an important environmental factor-dissolved organic material — on a macromolecular level, in addition to structural and physiological adaptations.

Keywords

Organic Material High Substrate Basic Amino Acid Uptake System Physiological Adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bamford, D.R. and R. McCrea: Active absorption of neutral and basic amino acids by the gill of the common cockle, Cerastoderma edule. Comp. Biochem. Physiol. 50A, 811–817 (1975)CrossRefGoogle Scholar
  2. — and M. Stewart: Absorption of neutral amino acids by the gut of Arenicola marina. J. comp. Physiol. 82, 291–304 (1973a)CrossRefGoogle Scholar
  3. ——: Absorption of charged amino acids by the intestine of Arenicola marina. Comp. Biochem. Physiol. 32A, 537–547 (1973b)CrossRefGoogle Scholar
  4. Bohling, H.: Gelöste Aminosäuren in Oberflächenwasser der Nordsee bei Helgoland: Konzentrationsveränderungen im Sommer 1970. Mar. Biol. 16, 281–289 (1972)CrossRefGoogle Scholar
  5. Jørgensen, C.B.: August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol. Rev. 51, 291–328 (1976)CrossRefGoogle Scholar
  6. Pandian, T.J.: Mechanisms of heterotrophy. In: Marine ecology. Vol. II. Physiological mechanisms, Part 1. pp 61–249. Ed. by O. Kinne. London: Wiley Interscience 1975Google Scholar
  7. Pappas, P.W. and C.P. Read: Parasitological review: membrane transport in helminth parasites. Expl Parasit. 37, 469–530 (1975)CrossRefGoogle Scholar
  8. Riley, J.P. and R. Chester: Introduction to marine chemistry, 465 pp. London & New York: Academic Press 1971Google Scholar
  9. Robinson, J.W.L.: Comment to lecture of G. Semenza. In: Biochemical and clinical aspects of peptide and amino acid absorption, pp 59–60. Ed. by K. Rommel and H. Goebell Stuttgart-New York: Schattauer 1973Google Scholar
  10. Schlichter, D.: Aktinien nehmen Aminosäuren und Glucose aus dem Meerwasser auf. Naturwissenschaften 58, 455–456 (1971)CrossRefGoogle Scholar
  11. —: Ernährungsphysiologische und ökologische Aspekte der Aufnahme in Meerwasser gelöster Aminosäuren durch Anemonia sulcata (Coelenterata, Anthozoa). J Oecologia (Berl.) 11, 315–350 (1973)CrossRefGoogle Scholar
  12. —: Der Einfluß physikalischer und chemischer Faktoren auf die Aufnahme in Meerwasser gelöster Aminosäuren durch Aktinien. Mar. Biol. 25, 279–290 (1974)CrossRefGoogle Scholar
  13. —: Die Bedeutung in Meerwasser gelöster Glucose für die Ernährung von Anemonia sulcata (Coelenterata: Anthozoa). Mar. Biol. 29, 283–293 (1975a)CrossRefGoogle Scholar
  14. —: The importance of dissolved organic compounds in sea water for the nutrition of Anemonia sulcata Pennant (Coelenterata). Proc. Eur. mar. biol. Symp. 9, 395–405 (1975b)Google Scholar
  15. Sepers, H.B.J.: The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia 52, 39–54 (1977)CrossRefGoogle Scholar
  16. Siebers, D.: Absorption of neutral and basic amino acids across the body surface of two annelid species. Helgoländer wiss. Meeresunters. 28, 456–466 (1976)CrossRefGoogle Scholar
  17. Stephens, G.C.: Dissolved organic matter as a potential source of nutrition for marine organisms. Am. Zool. 8, 95–106 (1968)CrossRefGoogle Scholar
  18. —: Amino acid accumulation and assimilation in marine organisms. In: Nitrogen metabolism and the environment, 318 pp. Ed. by J.W. Campbell and L. Goldstein. London: Academic Press 1972Google Scholar
  19. Taylor, A.G.: The direct uptake of amino acids and other small molecules from seawater by Nereis virens. Comp. Biochem. Physiol. 29, 243–250 (1969)CrossRefGoogle Scholar
  20. Tiffon, Y.: Hydrolases dans l'ectoderme de Cerianthus lloydi Gosse, Cerianthus membranaceus Spallanzani et Metridium senile (L): mis en évidence d'une digestion extracellulaire et extracorporelle. J. exp. mar. Biol. Ecol. 18, 243–254 (1975)CrossRefGoogle Scholar
  21. Trench, R.K.: Nutritional potential in Zoanthus sociathus (Coelenterata, Anthozoa). Helgoländer wiss. Meeresunters. 26, 174–216 (1974)CrossRefGoogle Scholar
  22. Van Pilsum, J.F., D. Taylor and L. Bans: Studies on the uptake of creatine from sea water by the marine annelid, Glycera dibranchiata. Comp. Biochem. Physiol. 51A, 611–617 (1975)CrossRefGoogle Scholar
  23. Wagner, F.S., Jr.: Composition of the dissolved organic compounds in sea water: a review. Contr. mar. Sci. Univ. Tex. 14, 115–153 (1969)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. Schlichter
    • 1
  1. 1.Lehrstuhl für Physiologische ÖkologieZoologisches Institut der Universität zu KölnGermany

Personalised recommendations