Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data

  • David Hoff


We extend to general polytropic pressures P(ρ) = Kργ, γ > 1, the existence theory of [8] for isothermal (γ= 1) flows of Navier-Stokes fluids in two and three space dimensions, with fairly general initial data. Specifically, we require that the initial density be close to a constant in L2 and L, and that the initial velocity be small in L2 and bounded in L2 n (in two dimensions the L2 norms must be weighted slightly). Solutions are obtained as limits of approximate solutions corresponding to mollified initial data. The key point is that the approximate densities are shown to converge strongly, so that nonlinear pressures can be accommodated, even in the absence of any uniform regularity information for the approximate densities.


Initial Data Electromagnetism Initial Velocity Global Solution Space Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. DiPerna & P.-L. Lions, Ordinary differential equations, transport theory, and Sobolev spaces, Inventories Math. 98 (1989), 511–547.Google Scholar
  2. 2.
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.Google Scholar
  3. 3.
    D. Hoff, Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data, Proc. Roy. Soc. Edinburgh A 103 (1986), 301–315.Google Scholar
  4. 4.
    D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc. 303 (1987), 169–181.Google Scholar
  5. 5.
    D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Rational Mech. Anal. 114 (1991), 15–46.Google Scholar
  6. 6.
    D. Hoff, Global wellposedness of the Cauchy problem for nonisentropic gas dynamics with discontinuous initial data, J. Diff. Eqs. 95 (1992), 33–73.Google Scholar
  7. 7.
    D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data, Indiana Univ. Math. J. 41 (1992), 1225–1302.Google Scholar
  8. 8.
    D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, to appear in J. Diff. Eqs. Google Scholar
  9. 9.
    P.-L. Lions, Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques, C. R. Acad. Sci. Paris 316 (1993), 1335–1340.Google Scholar
  10. 10.
    D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible, C.R. Acad. Sci. Paris 303 (1986), 639–642.Google Scholar
  11. 11.
    D. Serre, Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur, C. R. Acad. Sci. Paris 303 (1986), 703–706.Google Scholar
  12. 12.
    D. Serre, Variations de grande amplitude pour la densité d'un fluide visqueux compressible, Physica D 48 (1991), 113–128.Google Scholar
  13. 13.
    V. V. Shelukhin, On the structure of generalized solutions of the one dimensional equations of a polytropic viscous gas, Prikl. Mat. Mekh. 48 (1984), 912–920.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • David Hoff
    • 1
  1. 1.Department of MathematicsIndiana University Bloomington

Personalised recommendations