Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Einfluß von Phospholipiden auf den Stärkemetabolismus

The effect of phospholipids on starch metabolism

  • 33 Accesses

  • 15 Citations


The presence of phospholipids reduces the breakdown of amylose catalyzed by β-amylase, phosphorylase and α-amylase. The activities of the β-amylases of sweet potato (Ipomoea batatas) and barley (Hordeum vulgare L.) disminish to less than 10% of the activity in the control without the phospholipids. When the amylose was complexed with phospholipids the activity of the α-amylase of Bacillus subtilis was reduced to about 25% of the control value. A similar effect was observed for the amylases of Zea mays leaves. The phosphorylase effected almost no phosphorolysis of the complexed amylose, but starch synthesis from glucose-1-phosphate proceeded at a rate that was about 60% of that with pure amylose. The activity of the synthetase from bundle sheath cells of maize leaves was not influenced much by the presence of phospholipids, whereas the “branching enzyme” of maize endosperm did not produce any amylopectin from the complexed amylose. —These facts could explain the simultaneous deposition of amylose and amylopectin in the starch granules. Some of the newly formed glucan chains may be protected by formation of a complex with the phospholipids. This protected amylose can not undergo branching or breakdown, but it can be elongated owing to the activity of synthetase or phosphorylase. Amylopectin is formed from the chains that are not complexed.

This is a preview of subscription content, log in to check access.


  1. Acker, L., Schmitz, H.J.: Über die Lipide der Weizenstärke. (1., 2., 3. Mitt.) Die Stärke 19, 17–21, 233–239, 275–280 (1967)

  2. Badenhuizen, N.P.: Struktur und Bildung des Stärkekorns. In: Handbuch der Stärke. Bd. VI, Teil 2, Ullmann, M. (Hrsg.) Berlin-Hamburg: Paul Parey 1971

  3. Banks, W., Greenwood, C.T.: Molecular properties of the starch components and their relation to the structure of the granule. Ann. N.Y. Acad. Sci. 210, 17–33 (1973)

  4. Becker, G., Acker, L.: Über die Lipide der Gerstenstärke und ihre Veränderungen während des Wachstums der Gerste. Fette, Seifen, Anstrichmittel 74, 324–327 (1972)

  5. Bolling, H., El Bayâ, A.W.: Einfluß der Lipide auf die Bestimmung des Amylosegehaltes in Reis und Weizen. Chem. Mikrobiol. Technol. Lebensm. 3, 161–163 (1975)

  6. Downton, W.J.S., Hawker, J.S.: Evidence for lipid-enzyme interaction in starch synthesis in chilling sensitive plants. Phytochemistry 14, 1259–1263 (1975)

  7. Fekete, M.A.R. de, Vieweg, G.H.: Starch metabolism: Syntheses versus degradation pathways. In: Plant carbohydrate biochemistry. Ed.: Pridham, J.B., London-New York-San Francisco: Academic Press 1974a

  8. Fekete, M.A.R. de, Vieweg, G.H.: Über der Synthetase und Phosphorylase im Maisblatt bei verschiedenen Stärkegehalten. Planta (Berl.) 117, 83–91 (1974b)

  9. Fukui, T., Nikuni, Z.: Degradation of starch in the endosperms of rice seeds during germination. J. Biochem. (Tokyo) 43, 33–40 (1956)

  10. Greenwood, C.T., Thompson, J.: A comparison of the starches from barley and malted barley. J. Inst. Brew. (Lond.) 65, 346–354 (1959)

  11. Griffin, H.L., Wu, Y.V.: Isolation and Characterization of the Potato α-1,4-glucan-α-1,4-glucan 6-glucosyltransferase. Biochemistry 7, 3063–3072 (1968)

  12. Griffin, H.L., Wu, Y.V.: Corn and potato α-1,4-glucan: α-1,4-glucan 6-glycosyltransferase: Evidence for separate hydrolytic and branching components. Biochemistry 10, 4330–4335 (1971)

  13. Hamori, E., Senior, M.B.: Kinetic and hydrodynamic studies relating to the structure of the amylose macromolecule in aqueous solution. Ann. N.Y. Acad. Sci. 210, 34–38 (1973)

  14. Krisman, C.R.: A method for the colorimetric estimation of glycogen with iodine. Analyt. Biochem. 4 17–32 (1962)

  15. Lavintman, N., Krisman, C.R.: The α-glucan-branching glycosyltransferase of sweet corn. Biochim. biophys. Acta (Amst.) 89, 193–196 (1964)

  16. Manners, D.J., Rowe, J.J.M., Rowe, K.L.: Studies on carbohydrate-metabolising enzymes. Part XIX. Sweet-corn branching enzymes. Carbohyd. Res. 8, 72–81 (1968)

  17. Najdar, V.A.: Phosphoglucomutase from muscle. In: Methods in enzymology, Eds.: S.P. Colowick and N.O. Kaplan, Vol. 1, pp. 294–296. New York: Academic Press 1955.

  18. Ohad, J., Friedberg, J., Ne'eman, Z., Schramm, M.: Biogenesis and degradation of starch. Plant Physiol. 47, 465–477 (1977)

  19. Rothfield, L., Romeo, D.: Enzyme reactions in biological membranes. In: Structure and function of biological membranes. pp. 251–284, Ed.: Rothfield, L.I., New York-London: Academic Press 1971

  20. Schoch, T.J., Williams, C.B.: Adsorption of fatty acid by the linear component of corn starch. J. Amer. Chem. Soc. 66, 1232–1233 (1944)

  21. Thoma, J.A., Spradlin, J.E., Dygert, S.: Plant and animal amylases. In: The enzymes. 3rd Ed. Bd. V., pp. 115–189. Ed.: Boyer, P., New York-London: Academic Press 1971

  22. Ulmann, M.: Die Fraktionierung der Stärke. In: Handbuch der Stärke. Bd. VII, Teil 1. Hrsg.: Ulmann M., Berlin-Hamburg: Paul Parey 1971

  23. Vieweg, G.H., Fekete, M.A.R. de: Die Bedeutung des Glucose-1-Phosphates für die Stärkesynthese in den Bündelscheidenzellen von Zea mays. Planta (Berl.) 104, 257–266 (1972)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vieweg, G.H., de Fekete, M.A.R. Einfluß von Phospholipiden auf den Stärkemetabolismus. Planta 129, 155–159 (1976). https://doi.org/10.1007/BF00390022

Download citation