Advertisement

Planta

, Volume 147, Issue 2, pp 141–144 | Cite as

Oxygen and carbon dioxide exchanges in crassulacean-acid-metabolism-plants

  • M. André
  • D. A. Thomas
  • D. J. von Willert
  • A. Gerbaud
Article

Abstract

The 24 h O2 uptake and release together with the CO2 balance have been measured in two CAM plants, one a non-succulent Sempervivum grandifolium, the other a succulent Prenia sladeniana. The O2 uptake was estimated by the use of 18O2. It was found that the mean hourly O2 uptake in the light was 7 times that in the dark for Sempervivum and 5 times that for Prenia, after correction for the lightdark temperature difference. It was estimated that oxygen uptake in the light was 2.4 times greater than oxygen release (=net photosynthesis) in Sempervivum and 1.4 times greater in Prenia. In both plants there was a positive carbon balance over the 24 h period under the experimental conditions. It was estimated that malate formed during the night could, if completely oxidized to CO2 and water, account for 74% of the light phase O2 uptake in Sempervivum. In Prenia the O2 uptake was more than sufficient to account for a full oxidation of malate.

Key words

CAM plants CO2 exchange Malate oxidation O2 exchange O2 uptake Prenia Sempervivum 

Abbreviations

CAM

Crassulacean acid metabolism

PAR

photosynthetically active radiation

PEP

phosphoenolpyruvate

RrBP

ribulose-1,5-bisphosphate

TCA

tricarboxylic acid cycle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, M., Nervi, J.C., Lespinat, P.A., Massimino, D.: Units for automatic culture in artificial atmosphere. “C2 3A” project. Acta Hortic. 39, 39–72 (1974)Google Scholar
  2. André, M., Gerbaud, A.: Consommation d'oxygène pendant la photosynthèse chez Zea Mays. C. R. Acad. Sci. (in press)Google Scholar
  3. Brunnhöfer, H., Schaub, H., Egle, K.: Der Verlauf des CO2- und O2-Gaswechsels bei Bryophyllum daigremontianum in Abhängigkeit von der Temperatur. Z. Pflanzenphysiol. 59, 285–292 (1968)Google Scholar
  4. Clamon, G.: Etude de l'effet des faibles teneurs on oxygène sur la photosynthèse du mais. Thèse Dect. Spécialité, Univ. Nice 1975Google Scholar
  5. Cornic, G.: Effect exercé sur l'activité photosynthétique de Sinapis alba L. par une inhibition temporaire de la photorespiration se dévoulant dans un air sans CO2. C. R. Acad. Sci. Ser. D: 282, 1955–1958 (1976)Google Scholar
  6. Denius, H.R., Homann, P.H.: The relation between photosynthesis, respiration and crassulacean acid metabolism in leaf slices of Aloe arborescens Mill. Plant Physiol. 49, 873–880 (1972)Google Scholar
  7. Haidri, S.Z., Burris, R.H.: Incorporation of malic acid-2-14C and pyruvic acid-2-14C into starch. Plant Physiol. 30, Suppl. 4 (1955)Google Scholar
  8. Jones, L.W., Kok, B.: Photoinhibition of chloroplast reactions I. Kinetics and action spectra. Plant Physiol. 41, 1037–1043 (1966)Google Scholar
  9. Milburn, T.R., Pearson, D.J., Nolegwe, N.A.: Crassulacean acid metabolism under natural tropical conditons. New Phytol. 67, 883–897 (1968)Google Scholar
  10. Osmond, C.B., Allaway, W.G.: Pathway of CO2 fixation in the CAM plant Kalanchoë daigremontiana. I. Patterns of 14CO2 fixation in the light. Aust. J. Plant Physiol 1, 503–512 (1974)Google Scholar
  11. Schuber, M., Kluge, M.: Crassulaceen-Säurestoffwechsel (CAM) bei mitteleuropäischen Sukkulenten: Ökologische Untersuchugen an Sempervivum-Arten. Flora 168, 205–216 (1979)Google Scholar
  12. v. Willert, D.J., v. Willert, K.: Light modulation of the activity of the PEP-carboxylase in CAM plants in the Mesembryanthemacease. Z. Pflanzenphysiol. 95, 43–49 (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. André
    • 1
  • D. A. Thomas
    • 2
  • D. J. von Willert
    • 2
  • A. Gerbaud
    • 1
  1. 1.Département de Biologie, Service de RadioagronomieCEN CaderacheSaint-Paul-les-DuranceFrance
  2. 2.Lehrstuhl für PflanzenökologieUniversität BayreuthBayreuthGermany

Personalised recommendations