Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

NADP+-isocitrat-dehydrogenase aus Idus idus (Pisces: Cyprinidae). II. Einfluß der temperatur auf substrat- und cosubstrataffinität

  • 21 Accesses

Abstract

Maximum substrate and cosubstrate affinity, as judged by the Michaelis constant (K M ), of NADP+-dependent isocitrate dehydrogenase of pig heart (purchased from Boehringer, Mannheim, FRG) is attained at 37°C. If K M -values of substrate (Isocitrate, IC) and cosubstrate (NADP+) of NADP+-dependent isocitrate dehydrogenase (ICDH) of the white dorsal muscle of Idus idus L. is plotted against the experimental temperature (VT), W-shaped curves result. With increasing adaptation temperature (AT), there is a shift to increasing VT. It is suggested that the W-shaped curves are due either to the simultaneous presence of two multiple forms of the enzyme, or to the reversible temperature-dependent interconversion of one protein species.

This is a preview of subscription content, log in to check access.

Zitierte Literatur

  1. Aleksiuk, M.: An isoenzymic basis for instantaneous cold compensation in reptiles: lactate dehydrogenase kinetics in Thamnophis sirtalis. Comp. Biochem. Physiol. 40 (B), 671–681 (1971)

  2. Baldwin, J. and P. W. Hochachka: Functional significance of isoenzymes in thermal acclimation. Acetylcholinesterase from trout brain. Biochem. J. 116, 883–887 (1970).

  3. Behrisch, H. W.: Molecular mechanisms of adaptation to low temperature in marine poikilotherms. Some regulatory properties of dehydrogenases from two aretic species. Mar. Biol. 13, 267–275 (1972).

  4. Bergmeyer, H. U., G. Holz, E. M. Kauder, H. Möllering und O. Wieland: Kristallisierte Glycerokinase aus Candida mycoderma. Biochem. Z. 333, 471–480 (1961).

  5. Cowey, C. B.: Comparative studies on the activity of D-glyceraldehyde-3-phosphate dehydrogenase from cold and warmblooded animals with respect to temperature. Comp. Biochem. Physiol. 23, 969–976 (1967).

  6. Di Jeso, F.: Ammonium sulfate concentration conversion nomograph for 0°. J. biol. Chem. 243, 2022–2023 (1968).

  7. Dixon, M.: A nomogramm for ammonium sulphate solutions. Biochem J. 54, 457–458 (1953).

  8. Drost-Hansen, W.: Structure and properties of water at biological interfaces. In: Chemistry of the cell interface, Part B, pp 75–83 and 129–133. Ed. by H. D. Brown. New York, London: Academic Press 1971.

  9. Havsteen, B.: NADP+ Isocitrate dehydrogenase from Idus idus (Pisces: Cyprinidae). III. Discussion of temperature dependence of kinetic parameters. (In preparation).

  10. Hochachka, P. W. and G. N. Somero: The adaptation of enzymes to temperature. Comp. Biochem. Physiol. 27, 659–668 (1968).

  11. ——: Adaptations to the environment. In: Fish physiology, pp 100–155. Ed. by W. S. Hoar and D. J. Randall. New York: Academic Press 1971.

  12. Iwatsuki, N. and R. Okazaki: Mechanisms of regulation of deoxythymidine kinase of Escherichia coli. II. Effect of temperature on the enzyme activity and kinetics. J. molec. Biol. 29, 155–165 (1967).

  13. Kaplan, N. A.: Evolution of dehydrogenases. In: Evolving genes and proteins, pp 273–275. Ed., by V. Bryson and H. J. Vogel. New York: Academic Press 1965.

  14. Koster, I. F. and C. Veeger: The relation between temperature inducible allosteric effects and the activation energies of amino-acid oxidases. Biochim. biophys. Acta 167, 48–63 (1968).

  15. Lehrer, G. M. and R. Barker: Conformational changes in rabbit muscle aldolase. Kinet. Stud. Biochem. 9, 1533–1539 (1970).

  16. Massey, V., B. Curti and H. Ganthers: A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J. biol. Chem. 241, 2347–2357 (1966).

  17. Moon, Th. W. and P. W. Hochachka: Effect of thermal acclimation on multiple forms of the liver-soluble NADP+-linked isocitrate dehydrogenase in the family Salmonidae. Comp. Biochem. Physiol. 40 (B), 207–213 (1971a).

  18. —— Temperature and enzyme activity in poikilotherms. Isocitrate dehydrogenases in rainbow-trout liver. Biochem. J. 123, 695–705 (1971b).

  19. Newell, R. C.: The effect of temperature on the metabolism of poikilotherms. Nature, Lond. 212, 427–428 (1966).

  20. — Oxidative activity of poikilotherm mitochondria as a function of temperature. J. Zool. Lond. 151, 299–311 (1967).

  21. — and V. I. Pye: Temperature-induced variations in the respiration of mitochondria from the winkle, Littorina littorea (L.). Comp. Biochem. Physiol. 40 (B), 249–261 (1971).

  22. Passia, D.: NADP+-Isocitrat-Dehydrogenase aus Idus idus (Pisces: Cyprinidae). I. Aktivität als Funktion der Adaptationstemperatur. Mar. Biol. 23, 197–204 (1973).

  23. Precht, H.: Über die Temperaturabhängigkeit von Lebensprozessen. Z. Naturf. (Sekt. B) 4, 26–31 (1949).

  24. — Der Einfluß «normaler» Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse. Helgoländer wiss. Meeresunters. 18, 487–548 (1968).

  25. Precht, H., J. Christophersen, H. Hensel and W. Larcher (Ed.): Temperature and life, Heidelberg: Springer-Verlag. Im Druck.

  26. Shiga, K. and T. Shiga: The kinetic features of monomers and dimers in high- and low-temperature conformational states of D-amino acid oxidases. Biochim. Biophys. Acta 263, 294–303 (1972).

  27. Smith, M. W., V. E. Colombo and E. A. Munn: Influence of temperature acclimatization on the ionic activation of goldfish intestinal adenosine triphosphatase. Biochem. J. 107, 691–698 (1968).

  28. Somero, G. N.: Pyruvate kinase variants of the Alaskan king crab. Evidence for a temperature-dependent interconversion between two forms having distinct- and adaptivekinetic properties. Biochem. J. 114, 237–241 (1969).

  29. — and P. W. Hochachka: The effect of temperature on catalytic and regulatory functions of pyruvate kinases of the rainbow trout and the Antarctic fish Trematomus bernachii. Biochem. J. 110, 395–400 (1968).

  30. ——: Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature, Lond. 223, 194–195 (1969).

  31. Talsky, G.: Zur anomalen Temperaturabhängigkeit enzymkatalysierter Reaktionen. Angew. Chem. 15, 553–594 (1971).

  32. Wieland, Th. und G. Pfleiderer: Nachweis der Heterogenität von Milchsäure-Dehydrogenasen verschiedenen Ursprungs durch Trägerelektrophorese. Biochem. Z. 329, 112–116 (1957).

  33. Wernick, A. und H. Künnemann: Der Einfluß der Temperatur auf die Substrat-Affinität der Laktat-Dehydrogenase aus Fischen. Mar. Biol. 18, 32–36 (1973).

Download references

Author information

Additional information

Communicated by O. Kinne, Hamburg

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Künnemann, H., Passia, D. NADP+-isocitrat-dehydrogenase aus Idus idus (Pisces: Cyprinidae). II. Einfluß der temperatur auf substrat- und cosubstrataffinität. Mar. Biol. 23, 205–211 (1973). https://doi.org/10.1007/BF00389486

Download citation