Archive for History of Exact Sciences

, Volume 43, Issue 3, pp 225–249 | Cite as

The early history of the factorial function

  • Jacques Dutka
Article

Bibliography

  1. Bernoulli, D. [1], “Mensura Sortis ad fortuitam successionem rerum naturaliter contingentium applicata”, Novi Comment. Acad. Scient. Imp. Petrop. T. XIV (1769) publ. 1770, 26–45; Ibid. T. XV (1770), publ. 1771, 3–28.Google Scholar
  2. Bromwich, T. J. I'a [1], An Introduction to the Theory of Infinite Series, 2nd ed., London, 1949.Google Scholar
  3. Brunel, G. [1], “Monographie de la fonction gamma”, Mémoires de la Soc. Phys. et de Nat. de Bordeaux Ser. 3, Vol. 3 (1887), 1–184.Google Scholar
  4. De Moivre, A. [1], Miscellanea Analytica ..., London, 1730.Google Scholar
  5. De Moivre, A. [2], Miscellaneis Analyticus Supplementum, London, 1730.Google Scholar
  6. De Moivre, A. [3], The Doctrine of Chances, 3rd ed., London, 1756. Repr. New York, 1967.Google Scholar
  7. Dutka, J. [1], “The Early History of the Hypergeometric Function”, Archive for History of Exact Sciences, Vol. 31 (1984), 15–34.Google Scholar
  8. Eggenberger, Joh., Beiträge zur Darstellung des Bernoullischen Theorems der Gammafunktion ..., 2. Aufl., Jena, 1906.Google Scholar
  9. Euler, L. [1], “De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt”, Repr. Opera Omnia, Ser. 1, Vol. 14, 1–24 (E 19, 1730/31), 1738).Google Scholar
  10. Euler, L. [2], “Evolutio formulae integralis ∫ x f−1 dx(lx)m/n integration a valore x=0 ad x=1 extensa”, Repr. Opera Omina, Ser. 1, Vol. 17, 316–357 (E 421, (1771), 1772).Google Scholar
  11. Euler, L. [3], “Introductio in Analysin Infinitorum”, T. 1, Repr. Opera Omnia, Ser. 1, Vol. 8 (1748), E 101.Google Scholar
  12. Euler, L. [4], “De curva hypergeometrica hac aequatione expressa y=1 · 2 · 3 ... x”, Rep. Opera Omnia, Ser 1, Vol. 28, 41–98 (E 368 (1768), 1769).Google Scholar
  13. Euler, L. [5], “Observationes circa integralia formularum ∫ xp−1 dx (1−xn)q/n−1 posito post Integrationen x=1”, Repr. Opera Omnia, Ser 1, Vol. 17, 268–288 (E 321, (1762/5), 1766).Google Scholar
  14. Euler, L. [6], “Considérationes sur quelques formules intégrales dont les valeurs peuvent être exprimeées, en certains cas, par la quadrature du cercle”, Repr. Opera Omnia, Ser. 1, Vol. 19, 439–490 (E 816, publ. 1862).Google Scholar
  15. Euler, L. [7], “De valoribus integralium a termine variabilis x=0 usque ad x=∞ extensorum”, Repr. Opera Omnia, Ser 1, Vol. 19, 217–227 (E 675, (1781)).Google Scholar
  16. Faber, G. [l], “Übersicht über die Bände 14, 15, 16, 16* der ersten Serie”, in L. Euler, Opera Omnia, Bd. 16*, XL–LVI (1935).Google Scholar
  17. Fuss, P. H. [1], “Correspondance Mathématique et Physique ..., 2 Vols., 1843, Repr. New York, 1968.Google Scholar
  18. Gauss, C. F. [1], “Disquisitiones generales circa seriem infinitam ..., etc.”, Repr. Werke, Bd. III, 123–162.Google Scholar
  19. Gussov, V. V. [1], “The work of Russian savants on the theory of the gamma function” [in Russian], Istoriko-Mathematicheskye Issledovaniya, Vol. 5 (1952), 421–472.Google Scholar
  20. Hofmann, J. E. [1], “Um Eulers erste Reihenstudien”, Sammelband zu Ehren des 250. Geburtstages Leonhard Eulers. Ed. by K. Schroeder. Berlin, 1959, 139–208.Google Scholar
  21. Juškevič, A. P., & Winter, E. [1], “Leonhard Euler und Christian Goldbach Briefwechsel ...”, Abhandlungen der Deutsch. Akad. der Wiss. Kl. f. Phl. Gesch. ..., Jahrgang 1965, Nr. 1.Google Scholar
  22. Krazer, A. & Faber, G. [1], “Übersicht über die Bände 17, 18, 19 der ersten Serie”, in L. Euler, Opera Omnia, Ser. 1, Bd. 19, XLVII–LXV (1932).Google Scholar
  23. Legendre, A. M. [1], Exercices de calcul intégral, T. 1, Paris, 1811.Google Scholar
  24. Legendre, A. M. [2], Traité des fonctions elliptiques et des intégrales Euleriennes, T. 2, Paris, 1826.Google Scholar
  25. Milne-Thomson, L. M. [1], The Calculus of Finite Differences, London, 1933.Google Scholar
  26. Nielsen, N. [1], Die Gammafunktion, Berlin und Leipzig, 1906. Repr. New York, 1965.Google Scholar
  27. Schneider, I. [1], “Der Mathematiker Abraham de Moivre (1667–1754)”, Archive for History of Exact Sciences, Vol. 5 (1968), 177–317.Google Scholar
  28. Stirling, J. [1], Methodus Differentialis ...”, London, 1730.Google Scholar
  29. Todhunter, I. [1], A History of the Mathematical Theory of Probability ...”, Cambridge and London, 1865, Repr. New York, 1949.Google Scholar
  30. Tweedie, C. [1], James Stirling ..., Oxford 1922.Google Scholar
  31. Wallis, J. [1], Arithmetica Infinitorum, Oxford, 1655.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jacques Dutka
    • 1
  1. 1.Audits & SurveysNew York City

Personalised recommendations