Contributions to Mineralogy and Petrology

, Volume 19, Issue 4, pp 328–338 | Cite as

Strontium isotope studies on young volcanic rocks from Germany and Italy

  • J. Hoffs
  • K. H. Wedepohl


87Sr/86Sr ratios of Tertiary tholeiitic, basalts alkali olivine basalts and olivine nephelinites from Lower Saxony and Hessia and Quaternary leucite-nepheline tephrites from the Laacher See area are similar to those obtained from Hawaii and range from 0.7031 to 0.7054. Three trachytes and one phonolite from the Westerwald and one phonolite from the Laacher See area have higher values (0.7063 to 0.7093). Three Vesuvian lavas, three Somma lavas and two trachytes of the Phlegraic Fields show substantially higher ratios than the comparable basaltic rocks from N.W. Germany (0.7071 to 0.7102). Three peridotite nodules vary between 0.7048 and 0.7081. Three limestone composites of Paleozoic and Mesozoic age show values between 0.7129 and 0.7174.

The 87Sr/86Sr ratios of the trachytes and phonolites from the Westerwald and Laacher See area are probably influenced by crustal material. Assimilation processes of limestones producing the olivine-nephelinites from N.W. Germany seem to be unlikely. A discussion of the origin of the Sr ratios in Vesuvian rocks and of mantle homogeneity is included.


Olivine Strontium Volcanic Rock Crustal Material Basaltic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens, W., and R. Villwock: Exkursion in den Westerwald am 6. September 1964. Fort-schr. Mineral. 42, 303 (1966).Google Scholar
  2. Dasch, E. J., F. A. Hills, and K. K. Turekian: Strontium isotopes in deep-sea sediments. Science 153, 295–297 (1966).Google Scholar
  3. Faure, G., and P. M. Hurley: The isotopic composition of strontium in oceanic and continental basalts: application to the origin of igneous rocks. J. Petrology 4, 31–50 (1963).Google Scholar
  4. Gast, P. W.: Limitations on the composition of the upper mantle. J. Geophys. Research 65, 1287–1297 (1960).Google Scholar
  5. —: Isotope geochemistry of volcanic rocks. In: Basaltic rocks, vol. 1, ed. by H. H. Hess and A. Poldervaart. New York: Interscience 1967.Google Scholar
  6. Green, D. H., and A. E. Ringwood: The genesis of basaltic magma. Contr. Mineral. and Petrol. 15, 103–190 (1967).Google Scholar
  7. Hamilton, E. I.: Distribution of some trace elements and the isotopic composition of strontium in Hawaiian lavas. Nature 206, 251–253 (1965).Google Scholar
  8. Hedge, C. E., and F. G. Walthall: Radiogenic strontium-87 as an index of geologic processes. Science 140, 1214–1217 (1963).Google Scholar
  9. Hentschel, H.: F. In: Rösing: Erläuterungen und Blatt Nr. 4622 Kassel-West z. geolo-gischen Karte von Hessen 1:25000, 2. Aufl. Wiesbaden 1958.Google Scholar
  10. Hurley, P. M., H. W. Fairbairn, and W. H. Pinson: Rb-Sr isotopic evidence in the origin of potash-rich lavas of western Italy. Earth and Planetary Sci. Letters 1, 301–306 (1966).Google Scholar
  11. Lanphere, M. A.:Sr-Rb-K and Sr isotopic relationships in ultramafic rocks, southeastern Alaska. Earth and Planetary Sci. Letters 4, 185–190 (1968).Google Scholar
  12. Lessing, P., and E. J. Catanzaro: 87Sr/86Sr ratios in Hawaiian lavas. J. Geophys. Research 69, 1599–1601 (1964).Google Scholar
  13. Oxburgh, H. E. R.: Petrological evidence for the presence of amphibole in the upper mantle and its petrogenetic and geophysical implications. Geol. Mag. 101, 1–19 (1964).Google Scholar
  14. Peterman, Z. E., C. E. Hedge, and H. A. Tourtelot: Isotopic composition of strontium in sea water throughout Phanerozoic time. Geol. Soc. Am. Annual Meeting, Program p. 176 (1967).Google Scholar
  15. Powell, J. L., and S. E. Delong: Isotopic composition of strontium in volcanic rooks from Oahu. Science 153, 1239–1242 (1966).Google Scholar
  16. —, G. Faure, and P. M. Hurley: Strontium-87 abundance in a suite of Hawaiian volcanic rocks of varying silica content. J. Geophys. Research 70, 1509–1513 (1965).Google Scholar
  17. Rittmann, A.: Die geologisch bedingte Evolution und Differentiation des Somma-Vesuv-magmas. Z. Vulkan. 15, 8–94 (1933).Google Scholar
  18. Savelli, C.: The problem of rock assimilation by Somma-Vesuvius magma. 1. Composition of Somma and Vesuvius lavas. Contr. Mineral. and Petrol. 16, 328 (1967).Google Scholar
  19. Stueber, A. M., and V. R. Murthy: Strontium isotope and alkali element abundances in ultramafic rocks. Geochim. et Cosmochim. Acta 30, 1243–1259 (1966).Google Scholar
  20. Wedepohl, K. H.: Geochemische Kriterien für die Assimilation sedimentärer Gesteine in magmatischen Schmelzen. Jahrestagg. Referate Deut. Mineralog. Ges. 47 (1967).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • J. Hoffs
    • 1
  • K. H. Wedepohl
    • 2
  1. 1.Zentrallaboratorium für die Geochemie der Isotope in GöttingenDeutschland
  2. 2.Geochemisches Institut der Universität GöttingenDeutschland

Personalised recommendations