Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The fine structure of the sieve tubes of Salix caprea (L.) and its relation to the electroosmotic theory


The sieve plate pores of Salix caprea in preparations fixed in glutaraldehyde are normally found to be occupied by slime fibrils showing periodic banding such as occur in a number of other species. Arguments are put forward to suggest that the occurence of fibrils in this position is natural and not an artefact of preparation. The sieve tubes further possess prominent and persistent nucleoli showing a radiating structure of tubules. The endoplasmic reticulum often occurs in parietal stacks reminiscent of other species.

This evidence is discussed in relation to the electroosmotic theory of translocation.

This is a preview of subscription content, log in to check access.


  1. Bouck, G. B., Cronshaw, J.: the fine structure of differentiating sieve tube elements. J. Cell Biol. 25, 79–96 (1965).

  2. Buvat, R.: Sur la présence d'acide ribonucléique dans les “corpuscules muquex” des cellules criblées de Cucurbita pepo. C.R. Soc. Biol. (Paris) 257, 733–735 (1963.)

  3. Cronshaw, J., Anderson, R.: Sieve plate pores in Nicotiana. J. Ultrastruct. Res. 27, 134–148 (1969).

  4. —: Tubular and fibrillar components of mature and differentiating sieve elements. J. Cell Biol. 34, 801–815 (1967).

  5. Engleman, E. M.: Sieve elements of Impatiens sultanii. 2. Developmental aspects. Ann. Bot., N. S. 29, 103–118 (1965).

  6. Esau, K., Cronshaw, J.: Endoplasmic reticulum in the sieve element of Cucurbita. J. Ultrastruct. Res. 23, 1–14 (1968).

  7. Evert, R. F., Murmanis, L.: Ultrastructure of the secondary phloem of Tilia americana. Amer. J. Bot. 52, 95–106 (1965).

  8. Jarosch, R.: On the behaviour of rotating helices. In: Intracellular Transport (ed. K. B. Warren), p. 275–300. New York and London: Academic Press 1966.

  9. Johnson, R. P. C.: Microfilaments in pores between frozen-etched sieve elements. Planta (Berl.) 81, 314–332 (1968).

  10. —: Crystalline fibrils and complexes of membranes in the parietal layer in sieve elements. Planta (Berl.) 84, 68–80 (1969).

  11. Kollmann, R.: Untersuchungen über das Protoplasma der Siebröhren von Passiflora coerulea. Planta (Berl.) 55, 67–107 (1960).

  12. Lafleche, D.: Ultrastructure et cytochimie des inclusions flagellées des cellules criblées de Phaseolus vulgaris. J. Microscopie 5, 493–510 (1966).

  13. Northcote, D. H., Wooding, F. B. P.: Development of sieve tubes in Acer pseudoplatanus. Proc. roy. Soc. B 163, 524–537 (1966).

  14. Sharmann, B. C.: Tannic acid, iron alum with safranin and O. G. in studies of shoot apex. Stain Technol. 18, 105–111 (1943).

  15. Spanner, D.C.: the translocation of sugar in sieve tubes. J. exp. Bot. 9, 332–342 (1958).

  16. Spanner, D.C.: The electrosomotic theory of phloem transport in the light of recent measurements on Heracleum phloem. J. exp. Bot. (in press).

  17. Steer, M. W., Newcomb, E. H.: Development and dispersal of P-protein in the phloem of Coleus blumei Beuth. J. Cell Sci. 4, 155–169 (1969).

  18. Wark, M. C., Chambers, T. C.: Fine structure of the phloem of Pisum sativum. Austr. J. Bot. 13, 171–183 (1965).

  19. Weatherley, P. E., Johnson, R. P. C.: The form and function of the sieve tube: a problem in reconciliation. Int. Rev. Cytol. 24, 149–192 (1968).

  20. —: The physiology of the sieve tube. Preliminary experiments using aphid mouth parts. J. exp. Bot. 10, 1–16 (1959).

Download references

Author information

Additional information

This work formed part of that submitted for the degree of Ph. D. of the University of London by U. Mishra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mishra, U., Spanner, D.C. The fine structure of the sieve tubes of Salix caprea (L.) and its relation to the electroosmotic theory. Planta 90, 43–56 (1969).

Download citation


  • Endoplasmic Reticulum
  • Fibril
  • Fine Structure
  • Glutaraldehyde
  • Salix