Marine Biology

, Volume 36, Issue 3, pp 207–216 | Cite as

A survey of translocation in laminariales (Phaeophyceae)

  • K. Schmitz
  • C. S. Lobban
Article

Abstract

A survey of translocation of photoassimilates in 13 genera of Laminariales is presented. All showed long-distance transport of 14C-labeled products from mature source tissue to meristematic sinks (haptera and intercalary growing regions). In plants with several laminae forming one frond, older laminae may provide assimilates for the growth of younger ones, and in Macrocystis spp., where fronds of different ages and developmental stage arise from a common holdfast, mature fronds initiate and support new fronds. Translocation velocities vary from species to species but are in the range of 55 to 570 mm/h. The results strongly support the hypothesis that Laminariales in general have an effective translocation system, on which their thallus growth depends.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Crafts, A.S. and C.E. Crisp: Phloem transport in plants, 481 pp. San Francisco: Freeman 1971Google Scholar
  2. Esau, K.: The phloem. Handb. PflAnat. 5, 1–505 (1969)Google Scholar
  3. Hartmann, T. und W. Eschrich: Stofftransport in Rotalgen. Planta 85, 303–312 (1969)Google Scholar
  4. Lobban, C.S.: A simple, rapid method of solubilizing algal tissue for scintillation counting. Limnol. Oceanogr. 19, 356–359 (1974)Google Scholar
  5. Lüning, K.: Cultivation of Laminaria hyperborea in situ and in continuous darkness under laboratory conditions. Helgoländer wiss. Meeresunters. 20, 79–88 (1970)Google Scholar
  6. —, K. Schmitz und J. Willenbrink: Translocation of 14C-labelled assimilates in two Laminaria species. Proc. int. Seaweed Symp. 7, 420–425 (1972)Google Scholar
  7. ———: CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina. Mar. Biol. 23, 275–281 (1973)Google Scholar
  8. Markham, J.W.: An ecological study of Laminaria sinclairii and L. longipes, Ph. D. Thesis, University of British Columbia, Vancouver 1969Google Scholar
  9. Nicholson, N.L. and W.R. Briggs: Translocation of photosynthate in the brown alga Nereocystis. Am. J. Bot. 59, 97–106 (1972)Google Scholar
  10. Parker, B.C.: Translocation in the giant kelp Macrocystis. I. Rates, direction, quantity of C14-labeled products and fluorescein. J. Phycol. 1, 41–46 (1965)Google Scholar
  11. —: Translocation in Macrocystis. III. Composition of sieve tube exudate and identification of the major C14-labeled products. J. Phycol. 2, 38–41 (1966)Google Scholar
  12. — and J. Huber: Translocation in Macrocystis. II. Fine structure of the sieve tubes. J. Phycol. 1, 172–179 (1965)Google Scholar
  13. Pickett-Heaps, J.D.: Green algae. Structure, reproduction and evolution in selected genera, 606 pp. Sunderland, Mass.: Sinauer Ass. 1975Google Scholar
  14. Sargent, M.C. and L.W. Lantrip: Photosynthesis, growth and translocation in a giant kelp. Am. J. Bot. 39, 99–107 (1952)Google Scholar
  15. Schmitz, K., K. Lüning und J. Willenbrink: CO2-Fixierung und Stofftransport in benthischen marinen Algen. II. Zum Ferntransport 14C-markierter Assimilate bei Laminaria hyperborea und Laminaria saccharina. Z. PflPhysiol. 67, 418–429 (1972)Google Scholar
  16. — and L.M. Srivastava: The enzymatic incorporation of 32P into ATP and other organic compounds by sieve-tube sap of Macrocystis integrifolia Bory. Planta 116, 85–89 (1974a)Google Scholar
  17. ——: Fine structure and development of sieve tubes in Laminaria groenlandica Rosenv. Cytobiol. 10, 66–87 (1974b)Google Scholar
  18. ——: On the fine structure of sieve tubes and the physiology of assimilate transport in Alaria marginata Postels and Ruprecht. Can. J. Bot. 53, 861–876 (1975)Google Scholar
  19. Schmitz, K. and L.M. Srivastava: The fine structure of sieve elements in Nereocystis luetkeana. Am. J. Bot. (In press). (1976)Google Scholar
  20. Schumacher, W.: Untersuchungen über die Wanderung des Fluoreszeins in den Siebröhren. Jb. wiss. Bot. 77, 685–732 (1933)Google Scholar
  21. Steinbiß, H.-H. und K. Schmitz: CO2-Fixierung und Stofftransport in benthischen marinen Algen. V. Zur autoradiographischen Lokalisation der Assimilattransportbahnen im Thallus von Laminaria hyperborea. Planta 112, 253–263 (1973)Google Scholar
  22. Titlyanov, E.A. and V.M. Peshekhodko: On the transport of assimilates in the thalli of fringing seaweeds. Trud y biol. pochv. Inst. (N.S.) 20, 137–141 (1973)Google Scholar
  23. Ziegler, H.: Untersuchungen über die Feinstruktur des Phloems. II. Mitteilung: Die Siebplatten bei der Braunalge Macrocystis pyrifera (L.). Protoplasma 57, 786–779 (1963)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • K. Schmitz
    • 1
  • C. S. Lobban
    • 2
  1. 1.Botanisches Institut der Universität zu KölnKölnGermany (FRG)
  2. 2.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations