Marine Biology

, Volume 36, Issue 4, pp 291–302 | Cite as

Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography

  • H. -G. Hoppe


Substrate transformation and microbial biomass production in aquatic ecosystems depend mainly on the total number of actively metabolizing heterotrophic bacteria. The most common methods used concern the determination of either the colony-forming bacteria or the total number of bacteria including autotrophs and inactive organisms a micro-autoradiographic method is presented which enables the substrate uptake of single bacteria by means of 3H-amino-acid mixture and Nuclepore filters to be determined. The standardization procedure revealed the greatest success after 3 h incubation with 10 μCi/ml tritiated amino-acid mixture and an exposure of 14 days to the X-ray film. Preliminary experiments showed inactivation of an active fresh-water population from 100% to 0.6% within 3 h at 28‰S. With increasing distance from the shore, the number of colony-forming units decreases from 6 to 0.01% of the total number of active heterotrophic bacteria. It is concluded from the results that the fraction of very small heterotrophic bacteria which cannot be cultured on nutrient media is responsible for the continuous breakdown of organic matter in off-shore regions of the sea.


Biomass Microbial Biomass Biomass Production Aquatic Ecosystem Nutrient Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, H.L.: Dissolved organic carbon utilization in size-fractionated algal and bacterial communities. Int. Revue ges. Hydrobiol. 56, 731–749 (1971)Google Scholar
  2. Berlin, M. and R. Rylander: Autoradiographic detection of radioactive bacteria introduced into sea water and sewage. J. Hyg., Camb. 61, 307–315 (1963)Google Scholar
  3. Brock, M.L. and T.D. Brock: The application of micro-autoradiographic techniques to ecological studies. Mitt. int. Verein. theor. angew. Limnol. 15, 1–29 (1968)Google Scholar
  4. Brock, T.D.: Bacterial growth rate in the sea: direct analysis by thymidine autoradiography. Science, N.Y. 155, 81–83 (1967)Google Scholar
  5. Gocke, K.: Untersuchungen über den Einfluß des Salzgehaltes auf die Aktivität von Bakterienpopulationen des Süß- und Abwassers. Kieler Meeresforsch. 30, 99–106 (1974)Google Scholar
  6. Hellebust, J.A.: Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10, 192–206 (1965)Google Scholar
  7. Hobbie, J.E. and C.C. Crawford: Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14, 528–532 (1969)Google Scholar
  8. Hoppe, H.-G.: Untersuchungen zur Ökologie der Hefen im Bereich der westlichen Ostsee. Kieler Meeresforsch. 28, 54–77 (1972)Google Scholar
  9. —: Untersuchungen zur Analyse mariner Bakterienpopulationen mit einer autoradiographischen Methode. Kieler Meeresforsch. 30, 107–116 (1974)Google Scholar
  10. Horner, R. and V. Alexander: Algal populations in arctic sea ice: an investigation of heterotrophy. Limnol. Oceanogr. 17, 454–457 (1972)Google Scholar
  11. Ishida, Y. and H. Kadota: A comparison between viable count and direct count of bacteria in polluted sea water. Bull. Jap. Soc. scient. Fish. 41, p. 271 (1975)Google Scholar
  12. Hannasch, H.W.: Biological significance of bacterial counts in aquatic environments. Contr. Woods Hole oceanogr. Instn 1490, 127–131 (1965)Google Scholar
  13. Liu, M.S. and J.A. Hellebust: Uptake of amino acids by the marine centric diatom Cyclotella cryptica. Can. J. Microbiol. 20, 1109–1118 (1974)Google Scholar
  14. Munro, A.L.S. and T.D. Brock: Distinction between bacterial algal utilization of soluble substances in the sea. J. gen. Microbiol. 51, 35–42 (1968)Google Scholar
  15. Oppenheimer, C.H. (Ed.): Marine biology, Vol. IV. 485 pp. New York: New York Academy of Sciences, 1968Google Scholar
  16. Paerl, H.W.: Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems. Limnol. Oceanogr. 19, 966–972 (1974)Google Scholar
  17. — and C.R. Goldmann: Heterotrophic assays in the detection of water masses at Lake Tahoe, California. Limnol. Oceanogr. 17, 145–148 (1972)Google Scholar
  18. Parsons, T.D. and J.D.H. Strickland: On the production of particulate organic carbon by heterotrophic processes in the sea water. Deep-Sea Res. 8, 211–222 (1962)Google Scholar
  19. Peroni, C. and O. Lavarello: Microbial activities as a function of water depth in the Ligurian Sea: an autoradiographic study. Mar. Biol. 30, 37–50 (1975)Google Scholar
  20. Ramsay, A.J.: The use of autoradiography to determine the proportion of bacteria metabolizing in an aquatic habitat. J. gen. Microbiol. 80, 363–373 (1974)Google Scholar
  21. Rheinheimer, G.: Mikrobiologische Untersuchungen in der Elbe zwischen Schnackenburg und Cuxhaven. Arch. Hydrobiol. (Suppl. Elbe-Aestuar) 29, 181–251 (1965)Google Scholar
  22. —: Einige Beobachtungen über den Einfluß von Ostseewasser auf limnische Bakterienpopulationen. Veröff. Inst. Meeresforsch. Bremerh. (Sonderbd) 2, 237–244 (1966)Google Scholar
  23. —: Die Bedeutung des Elbe-Ästuars für die Abwasserbelastung der südlichen Nordsee in bakteriologischer Sicht. Helgoländer wiss. Meeresunters. 17, 445–454 (1968)Google Scholar
  24. Rogers, A.W.: Techniques of autoradiography, 372 pp. Amsterdam, London, New York: Elsevier Scientific Publishing Co. 1973Google Scholar
  25. Saunders, G.W.: Potential heterotrophy in a natural population of Oscillatoria agardhii var. isothrix Skuja. Limnol. Oceanogr. 17, 704–711 (1972)Google Scholar
  26. Sheldon, R.W.: Size separation of marine seston by membrane and glass-fiber filters. Limnol. Oceanogr. 17, 494–498 (1972)Google Scholar
  27. Sorokin, J.I.: The use of 14C in the study of nutrition of aquatic animals. Mitt. int. Verein. theor. angew. Limnol. 16, 1–41 (1968)Google Scholar
  28. Watt, W.D.: Measuring the primary production rates of individual phytoplankton species in natural mixed populations. Deep-Sea Res. 18, 329–339 (1971)Google Scholar
  29. Williams, P.J. LeB.: Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substrates. J. mar. biol. Ass. U.K. 50, 859–870 (1970)Google Scholar
  30. Wright, R.T. and E.J. Hobbie: The use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47, 447–464 (1966)Google Scholar
  31. Zimmermann, R. and L.-A. Meyer-Reil: A new method for fluorescence staining of bacterial populations on membrane filters. Kieler Meeresforsch. 30, 24–27 (1974)Google Scholar
  32. Zobell, C.E.: Marine microbiology. Chronica bot. 1–240 (1946)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • H. -G. Hoppe
    • 1
    • 2
  1. 1.Institut für Meereskunde an der Universität KielKielGermany (FRG)
  2. 2.Abt. Marine MikrobiologieInstitut für Meereskunde an der Universität KielKielGermany (FRG)

Personalised recommendations