Advertisement

Oecologia

, Volume 40, Issue 1, pp 103–112 | Cite as

δ13C values of some succulent plants from Madagascar

  • Klaus Winter
Article

Summary

δ13C values were determined in 20 succulents from Madagascar. The values were indicative of Crassulacean Acid Metabolism in 10 species of the Didiereaceae, 4 species of the Euphorbiaceae, 2 species of the Crassulaceae and 1 species of the Cucurbitaceae. The Didiereaceae and Euphorbiaceae studied are major components of a high biomass xerophytic flora in the semi-arid southwest and south of Madagascar. Three species of the Euphorbiaceae with succulent stems and non-succulent leaves, which were cultivated outdoors in the Tananarive Botanic Garden, showed C3 like δ13C values for both leaves and stems. δ13C values of leaf and stem material from a similar species, collected in the south of Madagascar, indicated Crassulacean Acid Metabolism.

Keywords

Biomass Acid Metabolism High Biomass Similar Species Crassulacean Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CAM

Crassulacean Acid Metabolism

References

  1. Bloom, A.J., Troughton, J.H.: High productivity and photosynthetic flexibility in a CAM plant. Oecologia (Berl.) 38, 35–43 (1979)Google Scholar
  2. Canabis, Y., Chabouis, L., Chabouis, F.: Végétaux et groupements végétaux de madagascar et des mascareignes, Tome I. Tananarive: Bureau Dével. Prod. Agr. 1969Google Scholar
  3. De Luca, P., Alfani, A., Virzo De Santo, A.: CAM, transpiration, and adaptive mechanisms to xeric environments in the succulent Cucurbitaceae. Bot. Gaz. 138, 474–478 (1977)CrossRefGoogle Scholar
  4. Hanscom, Z., Ting, I.: Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae). Oecologia (Berl.) 33, 1–15 (1978)Google Scholar
  5. Hartsock, T.L., Nobel, P.S.: Watering converts a CAM plant to daytime CO2 uptake. Nature (Lond.) 262, 574–576 (1976)Google Scholar
  6. Kluge, M., Ting, I.: Crassulacean Acid Metabolism. Analysis of an ecological adaptation. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  7. Koechlin, J., Guillaumet, J.-L., Morat, P.: Flore et végétation de Madagascar. Vaduz: Gantner, 1974Google Scholar
  8. Lange, O.L., Zuber, M.: Frerea indica, a stem succulent CAM plant with deciduous C3 leaves. Oecologia (Berl.) 31, 67–72 (1977)Google Scholar
  9. Nobel, P.S.: Water relations and photosynthesis of a desert CAM plant, Agave deserti. Plant Physiol. 58, 576–582 (1976)Google Scholar
  10. Nobel, P.S.: Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia (berl.) 27, 117–133 (1977)Google Scholar
  11. Osmond, C.B.: Environmental control of photosynthetic options in Crassulacean plants. In: Environmental and Biological Control of Photosynthesis (R. Marcelle, ed.). The Hague: Junk, 1975Google Scholar
  12. Osmond, C.B.: Crassulacean acid metabolism: a curiosity in context. Ann. Rev. Plant Physiol. 29, 379–414 (1978)CrossRefGoogle Scholar
  13. Osmond, C.B., Allaway, W.G., Sutton, B.G., Troughton, J.H., Queiroz, O., Lüttge, U., Winter, K.: Carbon isotope discrimination in photosynthesis of CAM plants. Nature (Lond.) 246, 41–42 (1973)Google Scholar
  14. Osmond, C.B., Nott, D.L., Firth, P.M.: Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in eastern Australia. Oecologia (Berl.) in press (1979)Google Scholar
  15. Rauh, W.: Weitere Untersuchungen an Didiereaceen. 1. Teil: Beitrag zur Kenntnis der Wuchsformen der Didiereaceen, unter besonderer Berücksichtigung neuer Arten. Sitz. Ber. Heid. Akad. Wiss., Math.-Nat. Kl. Jhg. 1960/61, 185–300 (1961)Google Scholar
  16. Rauh, W.: Didierécées. In: Flore de Madagascar et des Comores (H. Humbert, ed.). Paris: Muséum National d'Histoire Naturelle 1963Google Scholar
  17. Rauh, W.: Über die Zonierung und Differenzierung der Vegetation Madagaskars. Akad. Wiss. Lit., Mainz. Wiesbaden: Franz Steiner 1973Google Scholar
  18. Rauh, W., Reznik, H.: Zur Frage der systematischen Stellung der Didiereaceen. Bot. Jb. 81, 94–105 (1961)Google Scholar
  19. Rauh, W., Dittmar, K.: Weitere Untersuchungen an Didiereaceen. 3. Teil. Vergleichend-anatomische Untersuchungen an den Sprossachsen und den Dornen der Didiereaceen. Sitz. Ber. Heid. Akad. Wiss., Math.-Nat. Kl. Jhg. 1969/70, 163–246 (1970)Google Scholar
  20. Szarek, S.R., Ting, I.P.: Seasonal patterns of acid metabolism and gas exchange in Opuntia basilaris. Plant Physiol. 54, 76–81 (1974)Google Scholar
  21. Szarek, S.R., Ting, I.P.: The occurrence of Crassulacean acid metabolism among plants. Photosynthetica 11, 330–342 (1977)Google Scholar
  22. Troughton, J.H.: Aspects of the evolution of the photosynthetic carboxylation reaction in plants. In: Photosynthesis and Photorespiration (M.D. Hatch, C.B. Osmond, R.O. Slatyer, eds.). New York-London-Sydney-Toronto: Wiley 1971Google Scholar
  23. Winter, K., Troughton, J.H.: Photosynthetic pathways in plants of coastal and inland habitats of Israel and the Sinai. Flora 167, 1–34 (1978a)Google Scholar
  24. Winter, K., Troughton, J.H.: Carbon assimilation pathways in Mesembryanthemum nodiflorum L. under natural conditions. Z. Pflanzenphysiol. 88, 153–162 (1978b)Google Scholar
  25. Winter, K., Lüttge, U., Winter, E., Troughton, J.H.: Seasonal shift from C3 photosynthesis to Crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia (berl.) 34, 225–237 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Klaus Winter
    • 1
  1. 1.Department of Environmental Biology, Research School of Biological SciencesAustralian National UniversityCanberra CityAustralia

Personalised recommendations