, Volume 40, Issue 1, pp 51–62 | Cite as

Determination of the sedimentary microbial biomass by extractible lipid phosphate

  • D. C. White
  • W. M. Davis
  • J. S. Nickels
  • J. D. King
  • R. J. Bobbie


The measurement of lipid phosphate is proposed as an indicator of microbial biomass in marine and estuarine sediments. This relatively simple assay can be performed on fresh, frozen or frozen-lyophilized sediment samples with chloroform methanol extraction and subsequent phosphate determination. The sedimentary lipid phosphate recovery correlates with the extractible ATP and the rate of DNA synthesis. Pulse-chase experiments show active metabolism of the sedimentary phospholipids. The recovery of added 14C-labeled bacterial lipids from sediments is quantitative. Replicate analyses from a single sediment sample gave a standard deviation of 11%. The lipid extract can be fractionated by relatively simple procedures and the plasmalogen, diacyl phospholipid, phosphonolipid and non-hydrolyzable phospholipid content determined. The relative fatty acid composition can be readily determined by gas-liquid chromatography.

The lipid composition can be used to define the microbial community structure. For example, the absence of polyenoic fatty acids indicates minimal contamination with benthic micro-eukaryotes. Therefore the high content of plasmalogen phospholipids in these sediments suggests that the anaerobic prokaryotic Clostridia are found in the aerobic sedimentary horizon. This would require anaerobic microhabitats in the aerated zones.


Microbial Biomass Aerate Zone Polyenoic Fatty Acid Lipid Phosphate Bacterial Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalbers, J.A., Nieber, L.T.: A method for the quantitative determination of phosphonate phosphorous in the presence of organic and inorganic phosphate. Anal. Biochem. 24, 443–447 (1968)PubMedGoogle Scholar
  2. Bartlett, G.L.: Phosphorus assay in column chromatography. J. biol. Chem. 234, 466–468 (1959)PubMedGoogle Scholar
  3. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)Google Scholar
  4. Bobbie, R.J., Morrison, S.J., White, D.C.: Effects of substrate biodegradability on the mass and activity of the associated estuarine microbiota. Appl. environ. Microbiol. 35, 179–184 (1978)Google Scholar
  5. Christensen, J.P., Packard, T.T.: Sediment metabolism from the northwest African upwelling system. Deep Sea Res. 24, 331–343 (1977)Google Scholar
  6. Christian, R.R., Hall, J.R.: Experimental trends in sediment microbial heterotrophy: Radioisotopic techniques and analysis. In: Ecology of marine benthos (B.C. Coull, ed.), pp. 67–88. Columbia: University of South Carolina Press 1977Google Scholar
  7. Dale, N.G.: Bacteria in intertidal sediments: Factors related to their distribution. Limnol. Oceanogr. 19, 509–518 (1974)Google Scholar
  8. Daley, R.J., Hobbie, J.E.: Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20, 875–882 (1975)Google Scholar
  9. Dittmer, J.C., Wells, M.: Qualitative and quantitative analysis of lipids and lipid components. In: Methods of enzymology, Vol. 14 (J.M. Lowenstein, ed.), pp. 482–530, New York: Academic Press 1969Google Scholar
  10. Erwin, J.A.: Fatty acids in eukaryotic microorganisms. In: Lipids and biomembranes of eukaryotic microorganisms (J.A. Erwin, ed.), pp. 42–143. New York: Academic Press 1973Google Scholar
  11. Fairbairn, D.: Lipid components and metabolism of Acanthocephala and Nematoda. In: Chemical zoology, Vol. III, (M. Florkin, B.T. Scheer, eds.), pp. 361–378. New York-London: Academic Press 1969Google Scholar
  12. Fenchel, T.K., Jorgensen, B.B.: Detritus food chains of aquatic ecosystems: The role of bacteria. Adv. microbial Ecol. Vol. 1, 1–58 1977Google Scholar
  13. Fenchel, T.M., Riedl, R.J.: The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biol. 7, 255–268 (1970)Google Scholar
  14. Frerman, F.E., White, D.C.: Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus. J. Bacteriol. 94, 1868–1874 (1967)PubMedGoogle Scholar
  15. Goldfine, H., Hagen, P.-O.: Bacterial plasmalogens. In: Ether lipids, chemistry and biology (F. Snyder, eds.), pp. 329–350. New York: Academic Press 1972Google Scholar
  16. Hargrave, B.T.: Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr. 17, 583–596 (1972)Google Scholar
  17. Karl, D.M.: Occurrence and ecological significance of GTP in the ocean and in microbial cells. Appl. environ. Microbiol. 36, 349–355 (1978)Google Scholar
  18. Karl, D.M., Holm-Hansen, O.: Effects of luciferin concentration on the quantitative assay of ATP using crude luciferase preparations. Analyt. Biochem. 75, 100–112 (1976)PubMedGoogle Scholar
  19. Karl, D.M., LaRock, P.A.: Adenosine triphosphate measurements in soil and marine sediments. J. Fish. Res. Bd. Can. 32, 599–607 (1975)Google Scholar
  20. Kates, M.: Bacterial lipids. In: Advances in lipid research, Vol. 2 (R. Paoletti and D. Kritchevsky, eds.), pp. 17–90 New York: Academic Press 1964Google Scholar
  21. Kates, M.: Techniques of lipidology, pp. 393–469. New York: Elsevier Publishing 1972Google Scholar
  22. King, J.D., White, D.C.: Muramic acid as a measure of microbial biomass in estuarine and marine samples. Appl. environ. Microbiol. 33, 777–783 (1977)PubMedGoogle Scholar
  23. King, J.D., White, D.C., Taylor, C.W.: Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora. Appl. environ. Microbiol. 33, 1177–1183 (1977)Google Scholar
  24. Kittredge, J.S., Roberts, E.: A carbon-phosphorous bond in nature. Science (New York) 164, 37–42 (1969)Google Scholar
  25. Lechevalier, M.P.: Lipids in bacterial taxonomy—a taxonomist's view. CRC Critical Reviews in Microbiol. Vol. 7, 109–210 (1977)Google Scholar
  26. Lee, C.C., Harris, R.F., Williams, J.D.H., Armstrong, D.E., Syers, J.K.: Adenosine triphosphate in lake sediments: I: Determination. Soil Sci. Soc. Amer. Proc. 35, 82–91 (1971)Google Scholar
  27. Lower, W.R., Willett, J.D., Hansen, E.L.: Selection for adaptation to increased temperatures in free-living nematodes. II. Some lipid differences in Panagrellus reavivus. Comp. Biochem. Physiol. 34, 473–479 (1970)CrossRefPubMedGoogle Scholar
  28. McCloskey, J.A.: Mass spectrometry of lipids and steroids. In: Methods in enzymology, Vol. 14 (J.M. Lowenstein, ed.), pp. 382–450. New York: Academic Press 1969Google Scholar
  29. Moriarty, D.J.W.: A method for estimating the biomass of bacteria in aquatic sediments and its application to trophic studies. Oecologia (Berl.) 20, 219–224 (1975)Google Scholar
  30. Moriarty, D.J.W.: Improved method using muramic acid to estimate biomass of bacteria in sediments. Oecologia (Berl.) 26, 317–323 (1977)Google Scholar
  31. Pamatmat, M.M., Skjoldal, H.R.: Dehydrogenase activity and adenosine triphosphate concentration of marine sediments in Lindaspollene, Norway. Sarsia 56, 1–11 (1974)Google Scholar
  32. Shaw, N.: Lipid composition as a guide to the classfication of bacteria. Adv. appl. Microbiol. 17, 63–108 (1974)PubMedGoogle Scholar
  33. Sikora, J.P., Sikora, W.B., Erkenbrecher, C.W., Coull, B.C.: Significance of ATP, carbon, and caloric content of meiobenthic nematodes in partitioning benthic biomass. Marine Biol. 44, 7–14 (1977)Google Scholar
  34. Snyder, F. (editor): Ether lipids, chemistry and biology, pp. 1–433. New York: Academic Press 1972Google Scholar
  35. Tobin, R.S., Anthony, D.H.J.: Tritiated thymidine incorporation as a measure of microbial activity in lake sediments. Limnol. Oceanogr. 23, 161–165 (1978)Google Scholar
  36. Tobin, R.S., Ryan, J.F., Afghan, B.K.: An improved method for the determination of adenosine triphosphate in environmental samples. Water Research 12, 783–792 (1978)CrossRefGoogle Scholar
  37. White, D.C.: Lipid composition of the electron transport membrane of Haemophilus parainfluenzae. J. Bacteriol. 96, 1159–1170 (1968)PubMedGoogle Scholar
  38. White, D.C., Bobbie, R.J., Herron, J.S., King, J.D., Morrison, S.J.: Biochemical measurements of microbial mass and activity from environmental samples. In: Proc. ASTM Symp. “Native aquatic bacteria, enumeration, activity and ecology” (Minneapolis, June 25, 1977) 1979Google Scholar
  39. White, D.C., Cox, R.H.: Identification and localization of the fatty acids in Haemophilus parainfluenzae. J. Bacteriol. 93, 1079–1088 (1967)PubMedGoogle Scholar
  40. White, D.C., Frerman, F.E.: Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of the membrane-bound electron transport system. J. Bacteriol. 95, 2198–2209 (1968)PubMedGoogle Scholar
  41. White, D.C., Tucker, A.N.: Phospholipid metabolism during bacterial growth. J. Lipid Res. 10, 220–223 (1969)PubMedGoogle Scholar
  42. Wilkinson, B.J., Morman, M.R., White, D.C.: Phospholipid composition and metabolism of Micrococcus denitrificans. J. Bacteriol. 112, 1288–1294 (1972)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. C. White
    • 1
  • W. M. Davis
    • 1
  • J. S. Nickels
    • 1
  • J. D. King
    • 1
  • R. J. Bobbie
    • 1
  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations