Planta

, Volume 122, Issue 2, pp 179–184

The pattern of development of Anabaena in the Azolla-Anabaena symbiosis

  • D. J. Hill
Article

Summary

The development of Anabaena in the leaf cavities of Azolla (probably A. filiculoides) was studied. After the alga is installed in the cavity, heterocyst frequency rises to a maximum (20–30%) about 12 leaves from the apex, then remains constant until the leaf senesces. The size of vegetative cells of the alga increases with cell width apparently increasing linearly with increasing leaf age.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadjian, V.: The lichen symbiosis. Waltham-Toronto-London: Blaisdell 1967Google Scholar
  2. Bortels, H.: Über die Bedeutung des Molybdäns für die stickstoffbindenden Nostocaceen. Arch. Mikrobiol. 11, 155–186 (1940)Google Scholar
  3. Carr, N. G., Whitton, B. A. (ed.): The biology of the blue-green algae. Oxford: Blackwell 1973Google Scholar
  4. Clatworthy, J. N., Harper, J. L.: The comparative biology of closely related species living in the same area. V. Inter- and intraspecific interference within cultures of Lemna spp. and Salvinia natans. J. exp. Bot. 13, 307–324 (1962)Google Scholar
  5. Fay, P.: Cell differentiation and pigment composition in Anabaena cylindrica. Arch. Mikrobiol. 67, 62–70 (1969)PubMedGoogle Scholar
  6. Fogg, G. E.: Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen supply. Ann. Bot. 13, 241–259 (1949)Google Scholar
  7. Fogg, G. E., Steward, W. D. P., Fay, P., Walsby, A. E.: The blue green algae. London-New York: Academic Press 1973Google Scholar
  8. Grilli, M.: Infrastrutture di Anabaena azollae vivente nelle foglioline di Azolla carolliniana. Ann. Microbiol. (Milano) 14, 69–90 (1964)Google Scholar
  9. Hitch, C. J. B., Milbank, J. W.: Nitrogen metabolism in lichens VI. The blue-green phycobiont content, heterocyst frequency and nitrogenase activity in Peltigera species. New Phytol. 74 (1975) (in press).Google Scholar
  10. Huneke, A.: Beiträge zur Kenntnis der Symbiose zwischen Azolla und Anabaena. Beitr. Biol. Pflanzen 20, 315–341 (1933)Google Scholar
  11. Kulasooriya, S. A., Lang, N. J., Fay, P.: The heterocysts of blue-green algae III. Differentiation and nitrogenase activity. Proc. roy. Soc. B 181, 199–209 (1972)Google Scholar
  12. Lang, N.: Electron microscopy study of heterocyst development in Anabaena azollae Strasburger. J. Phycol. 1, 127–134 (1965)Google Scholar
  13. Moore, A. W.: Azolla: biology and agronomic significance. Bot. Rev. 35, 17–34 (1969)Google Scholar
  14. Oes, A. 1913: Über die Assimilation des freien Stickstoffs durch Azolla. Z. Bot. 5, 145–163 (1913)Google Scholar
  15. Peters, G. A., Mayne, B. C.: The Azolla, Anabaena azollae relationship. I. Initial characterisation of the association. Plant Physiol. (Lancaster) 53, 813–819 (1974a)Google Scholar
  16. Peters, G. A., Mayne, B. C.: The Azolla, Anabaena azollae relationship II. Localisation of nitrogenase activity as arranged by acetylene reduction. Plant Physiol. (Lancaster) 53, 820–824 (1974b)Google Scholar
  17. Schaede, R.: Untersuchungen über Azolla und ihre Symbiose mit Blaualgen. 35, 319–330 (1974)Google Scholar
  18. Shields, L. M., Durrell, L. W.: Algae in relation to soil fertility. Bot. Rev. 30, 92–128 (1964)Google Scholar
  19. Venkataraman, G. S.: Studies on nitrogen fixation by blue-green algae. III. Nitrogen fixation by Anabaena azollae. Indian J. agric. Sci. 32, 22–24 (1962)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • D. J. Hill
    • 1
  1. 1.Department of Plant BiologyUniversity of Newcastle upon TyneNewcastle upon TyneU.K.

Personalised recommendations