, Volume 118, Issue 2, pp 123–132 | Cite as

Qualitative and quantitative analyses of gibberellins throughout seed maturation in Pisum sativum cv. Progress No. 9

  • Valerie M. Frydman
  • Paul Gaskin
  • Jake MacMillan


In addition to the previously identified GA20 and GA29 in immature seeds of Pisum sativum L. cv. Progress No. 9, GA9, GA17, GA38, GA44, abscisic acid and dihydrophaseic acid have been identified. The levels of GA9, GA17, GA20 and GA29 have been determined throughout seed maturation by GC-MS. GA20 and GA29 are the major gibberellins in terms of quantity, the other gibberellins remain at very low levels throughout development of the seed.


Quantitative Analysis Abscisic Acid Gibberellin Seed Maturation Immature Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



abscisic acid


gibberellin An


gas chromatography


combined gas chromatography-mass spectrometry


combined gas chromatography-selected ion current monitoring


methyl ester


total ion current


thin layer chromatography


trimethylsilyl ether


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binks, R., MacMillan, J., Pryce, R. J.: Combined gas chromatography-mass spectrometry of the methyl esters of gibberellins A1 to A24 and their trimethylsilyl ethers. Phytochemistry 8, 271–284 (1969)CrossRefGoogle Scholar
  2. Bukovac, M. J., Nakagawa, S.: Comparative potency of gibberellins in inducing parthenocarpic fruit growth in Malus sylvestris Mill. Experientia (Basel) 23, 865 (1967)Google Scholar
  3. Burrows, W. J., Carr, D. J.: Cytokinin content of pea seeds during their growth and development. Physiol. Plantarum (Cph.) 23, 1064–1070 (1970)Google Scholar
  4. Carr, D. J., Skene, K. G. M.: Diauxic growth curves of seeds with special reference to French beans (Phaseolus vulgaris L.). Aust. J. biol. Sci. 14, 1–12 (1961)Google Scholar
  5. Coolbaugh, R. C., Moore, T. C.: Apparent changes in rate of kaurene biosynthesis during development of pea seeds. Plant Physiol. 44, 1364–1367 (1969)Google Scholar
  6. Coombe, B. G.: GA32: a polar gibberellin with high biological potency. Science 172, 856–857 (1971)Google Scholar
  7. Corcoran, M. R., Phinney, B. O.: Changes in amounts of gibberellin-like substances in developing seeds of Eschinocystis, Lupinus and Phaseolus. Physiol. Plantarum (Cph.) 15, 252–262 (1962)Google Scholar
  8. Durley, R. C., MacMillan, J., Pryce, R. J.: Investigation of gibberellins and other growth substances in the seed of Phaseolus multiflorus and of Phaseolus vulgaris by gas chromatography and by gas chromatography-mass spectrometry. Phytochemistry 10, 1891–1908 (1971)CrossRefGoogle Scholar
  9. Durley, R. C., Railton, I. D., Pharis, R. P.: Conversion of gibberellin A14 to other gibberellins in seedlings of dwarf Pisum sativum. Phytochemistry, 547–551 (1974)Google Scholar
  10. Frydman, V. M., MacMillan, J.: Identification of gibberellins A20 and A29 in seed of Pisum sativum cv. Progress No. 9 by combined gas chromatography-mass spectrometry. Planta (Berl.) 115, 11–15 (1973)Google Scholar
  11. Fukui, H., Ishii, H., Koshimizu, K., Katsumi, M., Ogawa, Y., Mitsui, T.: The structure of gibberellin A23 and the biological properties of 3,13-dihydroxy C20-gibberellins. Agr. Biol. Chem. 36, 1003–1012 (1972)Google Scholar
  12. Hiraga, K., Yokota, T., Murofushi, N., Takahashi, N.: Isolation and characterization of a free gibberellin and glucosyl esters of gibberellins in mature seeds of Phaseolus vulgaris. Agr. Biol. Chem. 36, 345–347 (1972)Google Scholar
  13. Kende, H., Lang, A.: Gibberellins and light inhibition of stem growth in peas. Plant Physiol. 39, 435–440 (1964)Google Scholar
  14. Komoto, N., Ikegami, S., Tamura, S.: Isolation of acidic growth inhibitors in dwarf peas. Agr. Biol. Chem. 36, 2547–2553 (1972)Google Scholar
  15. Isogai, Y., Okamoto, T., Komoda, Y.: Identification of a plant growth inhibitory substance from garden peas and its identification with (+) abscisin II. Chem. Pharm. Bull. 15, 1256–1257 (1967)PubMedGoogle Scholar
  16. MacMillan, J., Takahashi, N.: Proposed procedure for the allocation of trivial names to the gibberellins. Nature (Lond.) 217, 170–171 (1968)Google Scholar
  17. Railton, I. D., Durley, R. C., Pharis, R. P.: Metabolism of tritiated gibberellin A9 by shoots of dark grown dwarf pea, cv. Meteor. Plant Physiol., in press (1974a)Google Scholar
  18. Railton, I. D., Murofushi, N., Durley, R. C., Pharis, R. P.: Interconversion of gibberellin A20 to gibberellin A29 by etiolated seedlings and germinating seeds of dwarf Pisum sativum. Phytochemistry, 793–796 (1974b)Google Scholar
  19. Sachar, R. C., Kapoor, M.: Gibberellin in the induction of parthenocarpy in Zephyranthes. Plant Physiol. 34, 168–170 (1959)Google Scholar
  20. Skene, K. G. M.: The gibberellins of developing bean seeds. J. exp. Bot. 21, 236–246 (1970)Google Scholar
  21. Skene, K. G. M., Carr, D. J.: A quantitative study of the gibberellin content of seeds of Phaseolus vulgaris at different stages in their development. Aust. J. biol. Sci. 14, 13–25 (1961)Google Scholar
  22. Takahashi, N., Murofushi, N., Yokota, T.: Gibberellins in immature seeds of moon-flower (Calonyction aculeatum). In: Plant growth substances 1970, pp. 175–180 (Carr, D. J., ed.). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  23. Tinelli, E.T., Sondheimer, E., Walton, D. C., Gaskin, P., MacMillan, J.: Metabolites of 2-14C-abscisic acid. Tetrahedron Letters 1973, 139–140Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Valerie M. Frydman
    • 1
  • Paul Gaskin
    • 1
  • Jake MacMillan
    • 1
  1. 1.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations