Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Untersuchungen über die lichtinduzierten reversiblen xanthophyllumwandlungen an Chlorella und Spinacia

Studies on the light-induced reversible xanthophyll-conversions in Chlorella and spinach leaves

Summary

  1. 1.

    Using new methods in thin-layer chromatography, experiments were carried out to prove the light-induced changes in the quantity of various xanthophylls in Chlorella and spinach leaves. The probable connection of these interconversions to electron transport in photosynthesis was demonstrated.

  2. 2.

    The kinetics of these xanthophyll conversions were investigated during strong illumination and in the succeeding dark period (Chlorella).

    Already after illumination of 1 min one can detect a decrease of the di-epoxide xanthophyll violaxanthin and a corresponding increase of the epoxide-free zeaxanthin. The intermediate of this interconversion is the mono-epoxide antheraxanthin. Neoxanthin exhibits no change in concentration under the given light intensity and an illumination time of 60 min and more; the same result can be observed with the other carotenoids (α-carotene, β-carotene, lutein, lutein-5,6-epoxyd) and the chlorophylls a and b.

  3. 3.

    The light-induced formation of zeaxanthin is not correlated with those pigment interconversions which are photooxidative in their nature and which may be detected only after long illuminations. However, by using damaged, e.g., briefly heated Chlorella cells, a photooxidative-induced decrease of carotenes and chlorophyll a and a smaller decrease of xanthophylls and chlorophyll b could already be demonstrated after illumination of 15 min. In this case the ratio xanthophylls/ carotenes increases.

  4. 4.

    The transformation violaxanthin → antheraxanthin → zeaxanthin (“forward-reaction”) is induced not only by an illumination with white light (point 2) but also with red light (>600 nm); that means the reaction proceeds at a wavelength which cannot be absorbed by the xanthophylls themselves. Chlorophyll acts as light-acceptor.

  5. 5.

    The “forward-reaction” does not proceed after the cells have been heated for a short time. The presence of inhibitors of light-reaction II in photosynthesis such as o-phenanthroline, hydroxylamine and DCMU entirely suppresses the above reaction. The inhibition by DCMU can be reversed by substances (in Chlorella) which initiate or increase the cyclic electron transport at chlorophyll aI: vitamin K5 and hexylresorcinol.

    In contrast to its effect in chloroplasts (unpublished results), salicylaldoxime is only a very weak inhibitor of xanthophyll-conversion. Cyanide does not influence the “forward-reaction”; furthermore the reaction can be observed under aerobic and anaerobic conditions. The light-induced formation of zeaxanthin is entirely suppressed by the uncouplers CCCP and methylamine in concentrations of 10-4 M and 5×10-4 M, respectively.

  6. 6.

    The light-independent backward-reaction zeaxanthin → antheraxanthin → violaxanthin, which normally prevents a high accumulation of zeaxanthin, does not proceed under anaerobic conditions. Therefore under such conditions accumulation of zeaxanthin can be observed even in dim light.

  7. 7.

    The results indicate that the light-induced transformation violaxanthin → antheraxanthin → zeaxanthin, which consists in the light-induced splitting of the epoxide oxygen from violaxanthin, is not identical with the process which cases the release of oxygen in photosynthesis. There is evidence, however, that the xanthophyll-conversion is coupled with that electron-transport which goes on between reduced plastoquinone and oxidized chlorophyll aI; energy-rich compounds which are formed in this step of electron transport or ATP itself apparently is responsible for the cleavage of the oxygen from violaxanthin and for the resulting formation of zeaxanthin.

Zusammenfassung

  1. 1.

    Mit Hilfe neuer dünnschichtchromatographischer Methoden wurden quantitative Untersuchungen über die lichtinduzierten Mengenänderungen der Xanthophylle in Chlorella und Spinatblättern durchgeführt und die möglichen Zusammenhänge dieser Mengenänderungen mit den Elektronentransport-Vorgängen bei der Photosynthese aufgezeigt.

  2. 2.

    Der zeitliche Verlauf dieser Xanthophyll-Umwandlungen wurde während starker Belichtung und in nachfolgender Dunkelheit (Chlorella) untersucht.

  3. 3.

    Die lichtinduzierte Violaxanthin → Antheraxanthin → Zeaxanthinumwandlung (”Hin-Reaktion“) findet auch im Rotlicht (>600nm) statt. Als Lichtacceptor fungiert das Chlorophyll.

  4. 4.

    Diese Umwandlung hat nichts mit Pigmentveränderungen zu tun, die photooxydativer Natur sind, die erst nach längerer Belichtung in Erscheinung treten und die zu einer Erhöhung des Verhältnisses Xanthophylle/Carotine führen.

  5. 5.

    Die Hin-Reaktion unterbleibt nach kurzzeitiger Erhitzung der Zellen. Sie wird ferner durch Hemmstoffe der Lichtreaktion II bei der Photosynthese, nämlich o-Phenanthrolin, Hydroxylamin und DCMU vollständig unterbunden. Die Hemmung durch. DCMU kann (in Chlorella) durch Substanzen wieder aufgehoben werden, welche einen cyclischen Elektronentransport am Chlorophyll aI hervorrufen oder verstärken: Vitamin K5 und Hexylresorcin.

    Im Unterschied zu Chloroplasten (unveröffentlicht) wird die Xanthophyllumwandlung durch den Kupfer-Komplexbildner Salicylaldoxim nur schwach gehemmt. Cyanid beeinflußt die Hin-Reaktion nicht. Sie läuft außerdem unter aeroben und anaeroben Bedingungen gleichermaßen ab.

    Die Entkoppler CCCP und Methylamin unterbinden die lichtbedingte Zeaxanthin-Bildung bei Konzentrationen von 10-4 bzw. 5×10-4 m bereits vollständig.

  6. 6.

    Die lichtunabhängige Rückumwandlung Zeaxanthin → Antheraxanthin → Violaxanthin verhindert normalerweise eine stärkere lichtinduzierte Ansammlung von Zeaxanthin; diese Rückumwandlung wird in einer N2-Atmosphüre vollständig gehemmt. Unter solchen Bedingungen kann deshalb auch in schwachem Licht eine Akkumulation von Zeaxanthin beobachtet werden.

  7. 7.

    Die Ergebnisse zeigen, daβ die lichtabhäangige Violaxanthin → Antheraxanthin → Zeaxanthin-Umwandlung indirekt an einen Transport von Elektronen gekoppelt ist, welcher zwischen dem lichtreduzierten Plastochinon und dem lichtoxydierten Chlorophyll a1 abläuft die bei diesem Elektronentransport gebildeten (energiereichen) Verbindungen oder das ATP selbst stehen in ursächlichem Zusammenhang mit der [O]-Abspaltung aus dem Violaxanthin und der daraus resultierenden Bildung von Zeaxanthin.

This is a preview of subscription content, log in to check access.

Abbreviations

AS:

Ascorbinsäure

CCCP:

m-Chlorcarbonylcyanidphenyl-hydrazon

DCMU:

3-(3′,4′-dichlorphenyl)-1,1-dimethylharnstoff

DPIP:

2,6-Dichlorphenolindophenol

FMN:

Flavinmononucleotid

NADP:

Nicotinamid-adenindinucleotidphosphat

PMS:

Phenazinmethosulfat

SA:

Salicylaldoxim

Literatur

  1. Arnon, D. J., F. R. Whatley, and M. B. Allen: Vitamin K as a cofactor of photosynthetic phosphorylation. Biochim. biophys. Acta (Amst.) 16, 607–608 (1955).

  2. Avron, M., and N. Shavit: In: Photosynthetic mechanism of green plants, p. 611 Washington D.C.: Natl. Acad. Sci.-Nat. Res. Council, Publ. 1145, 1963.

  3. ——: Inhibitors and uncouplers of photophosphorylation. Biochim. biophys. Acta (Amst.) 109, 317–331 (1965).

  4. Bamberger, E. S., C. C. Black, Ch. A. Fewson, and M. Gibbs: Inhibitor studies on carbon dioxide fixation, adenosine triphosphate formation, and triphosphopyridine nucleotide reduction by spinach chloroplasts. Plant Physiol. 38, 483–487 (1963).

  5. Bamji, M. S., and N. J. Krinsky: Carotenoid de-epoxidation in algae. II. Enzymatic conversion of antheraxanthin to zeaxanthin. J. biol. Chem. 240, 467–470 (1965).

  6. Blass, U., J. M. Anderson, and M. Calvin: Biosynthesis and possible relations among the carotenoids and between chlorophyll a and b. Plant Physiol. 34, 329–333 (1959).

  7. Bomsel, J. L.: An in vivo study of cyclic photophosphorylation in wheat leaves. C. R. Acad. Sci. (Paris) 262, 1706–1709 (1966).

  8. Butow, R. A., and E. Racker: On the mechanism of respiratory control. J. gen. Physiol. 49, 149–162 (1965).

  9. Cholnoky, L., C. Györgyfy, E. Nagy, and M. Pánczél: Function of carotenoids in chlorophyll-containing organs. Nature (Lond.) 178, 410–411 (1956).

  10. DeKiewiet, D. Y., D. O. Hall, and E. L. Jenner: Effect of carbonyl cyanide m-chlorophenylhydrazone on the photochemical reactions of isolated chloroplasts. Biochim. biophys. Acta (Amst.) 109, 284–292 (1965).

  11. Dorough, G. D., and M. Calvin: The pathway of oxygen in photosynthesis. J. Amer. chem. Soc. 73, 2362–2365 (1951).

  12. Duysens, L. N. M., and H. E. Sweers: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: H. Tamiya, Studies on microalgae and photosynthetic bacteria. Tokyo: Jap. Soc. Plant Phys. 1963, p. 353–372

  13. Egle, K.: Untersuchungen über die Resistenz der Plastidenfarbstoffe. Bot. Archiv 45, 93–148 (1944).

  14. Fork, D. C., and W. Urbach: Evidence for the localization of plastocyanin in the electron-transport chain of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 53, 1307–1315 (1965).

  15. Gaffron, H.: Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev. 19, 1–20 (1944).

  16. Gingras, G. and C. Lemasson: A study of the mode of action of 3-(4-chlorophenyl)-1,1-dimethylurea on photosynthesis. Biochim. biophys. Acta (Amst.) 109, 67–78 (1965).

  17. Gould, E. S., and J. A. Bassham: Inhibitor studies on the photosynthetic carbon reduction cycle in Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 102, 9–19 (1965).

  18. Hager, A.: Über den Einfluß klimatischer Faktoren auf den Blattfarbstoffgehalt höherer Pflanzen. Planta (Berl.) 49, 524–560 (1957).

  19. —: Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktion. Ber. dtsch. bot. Ges. 79, 94–107 (1966).

  20. —, u. T. Meyer-Bertenrath: Die Isolierung und quantitative Bestimmung der Carotinoide und Chlorophylle von Blättern, Algen und isolierten Chloroplasten mit Hilfe dünnschichtchromatographischer Methoden. Planta (Berl.) 69, 198–217 (1966).

  21. Hager, A., u. T. Meyer-Bertenrath: Die Identifizierung der an Dünnschichten getrennten Carotinoide grüner Blätter und Algen. J. Chromatogr. (Amst.) im Druck. (1967).

  22. Heytler, P. G., and W. W. Prichard: A new class of uncoupling agents-carbonyl cyanide phenyl hydrazones. Biochem. biophys. Res. Commun. 7, 272–275 (1962).

  23. Izawa, S.: The swelling and shrinking of chloroplasts during electron transport in the presence of phosphorylation uncouplers. Biochim. biophys. Acta (Amst.) 102, 373–378 (1965).

  24. —, and N. E. Good: The number of sites sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea and 2-chloro-4-(2-propylamino)-6-ethylamino-s-triazine in isolated chloroplasts. Biochim. biophys. Acta (Amst.) 102, 20–38 (1965a).

  25. ——: Hill reaction rates and chloroplasts fragment size. Biochim. biophys. Acta (Amst.) 109, 372–381 (1965b).

  26. Katoh, S., and A. San Pietro: Inhibition effect of salicylaldoxime on chloroplast photooxidation-reduction reaction. Biochem. biophys. Res. Commun. 24, 903–908 (1966).

  27. Kessler, E.: Die photosynthetische Sauerstoffenwicklung. In: Handbuch der Pflanzenphysiologie Bd. V/1, S. 923–934. Berlin-Göttingen-Heidelberg: Springer 1960.

  28. —: Biochemische Variabilität der Photosynthese: Photoreduktion und verwandte Photosynthesetypen. In: Handbuch der Pflanzenphysiologie Bd. V/1, S. 935–965. Berlin-Göttingen-Heidelberg: Springer 1960.

  29. Krinsky, N. J.: Carotenoid de-epoxidations in algae. I. Photochemical transformation of antheraxanthin to zeaxanthin. Biochim. biophys. Acta (Amst.) 88, 487–491 (1964).

  30. Krogmann, D. W., and J. J. Lightbody: Plastocyanin from Anabaena variabilis. Plant Physiol. Proc. Ann. Meetings p. XXII (1966).

  31. Losada, M., and D. I. Arnon: Selective inhibitors of photosynthesis. In: Metabolic inhibitors, vol. II. p. 559–593. New York and London: Academic Press 1963.

  32. Lundegårdh, H.: The effect of light on chloroplast carotenoids. Plant Physiol. 17, 482–491 (1964).

  33. —: Action spectra of photosynthetic activities of Chlorella ellipsoidea. Physiol. plantarum 19, 541–553 (1966).

  34. Miflin, B. J., and C. P. Whittingham: The effect of inhibitors on the path of carbon in photosynthesis by Chlorella at low partial pressures of CO2 I. Methylamin. Ann. Bot. 30, 329–337 (1966).

  35. Plengvidhya, P., and R. H. Burris: Inhibitors of photophosphorylation and photoreduction. Plant Physiol. 40, 997–1002 (1965).

  36. Rumberg, B., P. Schmidt-Mende, B. Skerra, J. Vater, J. Weikard u. H. T. Witt: Analyse der Photosynthese mit Blitzlicht. III. Der Reaktionscyclus II der Photosynthese. Z. Naturforsch. 20b, 1086–1101 (1965).

  37. Ruppel, H.-G.: Untersuchungen über die Zusammensetzung von Chlorella bei Synchronisation im Licht-Dunkel-Wechsel. Flora (Jena) 152, 113–138 (1962).

  38. Saakov, V. S.: The mechanism of violaxanthin during the light reaction of chloroplasts. Dokl. Akad. Nauk SSSR 148, 1412–1415 (1963).

  39. —: Metabolism of violaxanthin 14C in the leaf and its role in photosynthesis reaction. Dokl. Akad. Nauk SSSR 165, 230–233 (1965a).

  40. —: On the possible role of xanthophylls in oxygen transfer during photosynthesis. Fiziol. Rastenij 12, 377–385 (1965b).

  41. —, u. J. N. Konovalov: Über die Funktion der Carotinoide in der Photosynthese. Trudy Botan. Sad. Akad. Nauk Kazachskoy SSSR 9, 81–98 (1966).

  42. Sapozhnikov, D. J., D. G. Alkhazov, Z. M. Eidelman, N. V. Bazhanova, J. K. Lemberg, T. G. Maslova, A. B. Girshin, I. A. Popova, V. S. Saakov, O. F. Popova, and G. A. Shiryaeva: The assimilation of 18O from heavy-oxygen water into violaxanthin when the plant is exposed to the action of light. Bot. Zhur. 46, 673–676 (1961).

  43. —, Z. M. Eidelman, N. V. Bazhanova, and O. F. Popova: The inhibitory effect of hydroxylamin on the photoreactions in the course of xanthophyll transformation. Dokl. Akad. Nauk SSSR 127, 1128–1131 (1959a).

  44. —, T. A. Krasovskaya, and A. N. Mayevskaya: Changes observed in the relation between the main carotenoids in the plastids of green leaves exposed to light. Dokl. Akad. Nauk SSSR 113, 465–467 (1957).

  45. —, A. N. Maevskaya, T. A. Krasovskaya-Antropova, L. L. Prialgauskaite u. V. S. Turchina: Der Einfluß der Anaerobiose auf die Änderung des Verhältnisses der Hauptcarotinoide des grünen Blattes. Biokhimiya 24, 34 (1959b).

  46. —, T. G. Maslova, N. V. Bazhanova, and O. F., Popova: Kinetics of inclusion of 18O from H2 18O into Violaxanthin. Biofizika 10, 349–351 (1965).

  47. Shneour, E. A., and M. Calvin: Isotopic oxygen incorporation in xanthophylls of Spinacea oleracea quantasomes. Nature (Lond.) 196, 439–441 (1962).

  48. Simonis, W.: Photosynthese und lichtabhängige Phosphorylierung. In: W. Ruhland, Handbuch der Pflanzenphysiologie V/I, S. 966–1013. Berlin-Göttingen-Heidelberg: Springer 1960.

  49. Sironval, C, and O. Kandler: Photooxidation processes in normal green Chlorella cells. Biochim. biophys. Acta (Amst.) 29, 359–368 (1958).

  50. Sweetser, Ph. B.: Photoinactivation of monuron, 3-(p-chlorophenyl)-1,1-dimethylurea, by riboflavin 5-phosphate. Biochim. biophys. Acta (Amst.) 66, 78–85 (1963).

  51. Tanner, W., L. Dächsel, and O. Kandler: Effects of DCMU and antimycin A on photoassimilation of glucose in Chlorella. Plant Physiol. 40, 1151–1156 (1956).

  52. Trebst, A.: Zur Hemmung photosynthetischer Reaktionen in isolierten Chloroplasten durch Salicylaldoxim. Z. Naturforsch. 18b, 817–821 (1963).

  53. —, u. H. Eck: Über eine p-Hydroxylierung in isolierten Chloroplasten. Z. Naturforsch. 18b, 105–109 (1963).

  54. —— u. S. Wagner: Effects of quinons and oxygen in the electron transport system of chloroplasts. In: Photosynthetic mechanisms of green plants, p. 174–194. Washington: Nat. Acad. Sci.-Natl. Res. Counc. 1963.

  55. Warburg, O., u. K. Jetschmann: Hemmung der Phosphorylierung durch Phenanthrolin in lebender Chlorella. In: Warburg, Weiterentwicklung der zellphysiologischen Methoden, S. 612–614. Stuttgart: Georg Thieme 1962.

  56. Whatley, F. R., B. M. Allen, and D. J. Arnon: Photosynthesis by isolated chloroplasts. VII. Vitamin K and riboflavin phosphate as cofactors of cyclic photophosphorylation. Biochim. biophys. Acta (Amst.) 32, 32–46 (1959).

  57. Yamamoto, H. Y., and C. O. Chichester: Dark incorporation of oxygen into antheraxanthin by bean leaf. Biochim. biophys. Acta (Amst.) 109, 303–305 (1965).

  58. —— and T. O. M. Nakayama: Xanthophylls and the Hill reaction. Photochem. Photobiol. 1, 53–57 (1962a).

  59. ———: Biosynthetic origin of oxygen in the leaf xanthophylls. Arch. Biochem. 96, 645–649 (1962b).

  60. —, T. O. M. Nakayama, and C. O. Chichester: Studies on the light and dark interconversions of leaf xanthophylls. Arch. Biochem. 97, 168–173 (1962c).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hager, A. Untersuchungen über die lichtinduzierten reversiblen xanthophyllumwandlungen an Chlorella und Spinacia . Planta 74, 148–172 (1967). https://doi.org/10.1007/BF00388326

Download citation