Advertisement

Planta

, Volume 137, Issue 3, pp 287–291 | Cite as

Rosmarinic acid production in Coleus cell cultures

  • A. Razzaque
  • B. E. Ellis
Article

Abstract

Cell suspension cultures of Coleus blumei Benth. have been found to accumulate 8–11% of their dry weight as rosmarinic acid (α-O-caffeoyl-3,4-dihydroxyphenyl-lactic acid). Actively-growing tissue converts >20% of exogenously supplied phenylalanine and tyrosine to the caffeoyl ester and this high rate of synthesis coincides with an increase in phenylalanine ammonia-lyase specific activity. Administration to the cultures of known phenylpropanoid precursors of rosmarinic acid failed to enhance the latter's production and in some cases inhibited it.

Key words

Cell culture Coleus Rosmarinic acid 

Abbreviations

RA

rosmarinic acid (α-O-caffeoyl-3,4-dihydroxyphenyllactic acid

DOPA

dihydroxyphenylalanine

PAL

phenylalanine ammonialyase

DOPL

dihydroxyphenyl-lactic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braun, G., Seitz, U.: Verlauf der Akkumulation von Kaffee-, Ferula-und Chlorogensäure in Beziehung zur Cyanodinakkumulation bei 2 Zellinien von Daucus carota. Biochem. Physiol. Pflanzen 168, 93–100 (1975)Google Scholar
  2. Camm, E.L., Towers, G.H.N.: Phenylalanine ammonia lyase, a review. Phytochemistry 12, 961–973 (1973)CrossRefGoogle Scholar
  3. Constabel, F., Gamborg, O.L., Kurz, W.G.W., Steck, W.: Production of secondary metabolites in plant cell cultures. Planta Med. 25, 158–165 (1974)PubMedGoogle Scholar
  4. Danks, M.L., Fletcher, J.S., Rice, E.L.: Effects of phenolic inhibitors on growth and metabolism of glucose-UL-14C in Paul's Scarlet rose cell-suspension cultures. Amer. J. Bot. 62, 311–317 (1975)Google Scholar
  5. Davies, M.E.: Effects of auxin on polyphenol accumulation and the development of phenylalanine ammonia lyase activity in dark grown suspension cultures of Paul's Scarlet rose. Planta (Berl.) 104, 66–77 (1972)Google Scholar
  6. Döller, G., Alfermann, A.W. and Reinhard, E.: Produktion von Indolalkaloiden in Calluskulturen von Catharanthus roseus. Planta Med. 30, 14–20 (1976)PubMedGoogle Scholar
  7. Ellis, B.E., Towers, G.H.N., Biogenesis of rosmarinic acid in Mentha. Biochem. J. 118, 291–297 (1970)PubMedGoogle Scholar
  8. Ellis, B.E., Major, G., Zenk, M.H.: Preparation of L-tyrosine-ring-14C, L-DOPA-ring-14C and related metabolites. Anal. Biochem. 53, 470–477 (1973)PubMedGoogle Scholar
  9. Gamborg, O.L.: Aromatic metabolism in plants V. The biosynthesis of chlorogenic acid and lignin in potato cell cultures. Can. J. Biochem. 45, 1451–1457 (1967)PubMedGoogle Scholar
  10. Gamborg, O.L., Eveleigh, D.E.: Culture methods and detection of glucanases in suspension cultures of wheat and barley. Can. J. Biochem. 46, 417–421 (1968)PubMedGoogle Scholar
  11. Hahlbrock, K., Wellmann, E.: Light-induced flavone biosynthesis and activity of phenylalanine ammonia-lyase and UDP-apiose synthetase in cell suspension cultures of Petroselinum hortense. Planta (Berl.) 94, 236–239 (1970)Google Scholar
  12. Hahlbrock, K., Kuhlen, E., Lindl, T.: Änderungen von Enzymaktivitäten während des Wachstums von Zellsuspensionskulturen von Glycine max: Phenylalanin Ammonium-Lyase und p-Cumarate: CoA Ligase. Planta (Berl.) 99, 311–318 (1971)Google Scholar
  13. Harborne, J.B.: Caffeic acid ester distribution in higher plants. Z. Naturforsch. 21b, 604–605 (1966)Google Scholar
  14. Hiller, K., Kothe, N.: Chlorogen- und Rosmarinsäure—Vorkommen und quantitative Verteilung in Pflanzen der Saniculoideae. Pharmazie 22, 220–221 (1967)Google Scholar
  15. Hirotani, M., Furuya, T.: Cardenolide synthesis in redifferentiated shoots from callus cultures of Digitalis purpurea. Phytochemistry 16, 610–611 (1977)CrossRefGoogle Scholar
  16. Li, H.C., Rice, E.L., Rohrbaugh, L.M., Wender, S.H.: Effects of abscisic acid on phenolic content and lignin biosynthesis in tobacco tissue culture. Physiol. Plant. 23, 928–936 (1970)Google Scholar
  17. Litvinenko, V.I., Popova, T.P., Simonjon, A.V., Zoz, I.G., Sokolov, V.S.: “Gerbstoffe” und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med. 27, 372–380 (1975)PubMedGoogle Scholar
  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randell, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  19. Margna, U.: Control at the level of substrate supply—an alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 16, 419–426 (1977)CrossRefGoogle Scholar
  20. Rhodes, M.J.C., Wooltorton, L.S.C.: The enzymic conversion of hydroxy-cinnamic acids to p-coumarylquinic and chlorogenic acids in tomato fruits. Phytochemistry 15, 947–951 (1976)CrossRefGoogle Scholar
  21. Scarpati, M.L., Oriente, G.: Isolament e constituzione dell'acido rosmarinico (del Rosmarinus off.). Ricerca sci. 28, 2329–2333 (1958)Google Scholar
  22. Staba, E.J.: Plant tissue culture as a technique for the phytochemist. In: Recent Advances in Phytochemistry vol. 2, pp. 75–106. Seikel, M.K., Runeckles, V.C., Eds. New York: Appleton-Century-Crofts, 1969Google Scholar
  23. Stärk, D., Alfermann, A.W., Reinhard, E.: Verlauf von Phenylalanin-Ammonium-Lyase-Aktivität, Anthocyan- und Chlorogensäurebildung in verschiedenen Zellstämmen von Daucus carota. Planta Med. 30, 104–117 (1976)Google Scholar
  24. Stickland, R.G., Sunderland, N.: Production of anthocyanins, flavonols and chlorogenic acids by cultured callus tissues of Haplopappus gracilis. Ann. Bot. 36, 443–457 (1972)Google Scholar
  25. Stöckigt, J., Zenk, M.H.: Enzymatic synthesis of chlorogenic acid from caffeoyl CoA and quinic acid. FEBS Lett. 42, 131–134 (1974)CrossRefPubMedGoogle Scholar
  26. Widholm, J.M.: Control of aromatic amino acid biosynthesis in cultured plant tissues: effects of intermediates and aromatic amino acids on free levels. Physiol. Plant. 30, 13–18 (1974)Google Scholar
  27. Widholm, J.M.: Selection and characterization of cultured carrot and tobacco lines resistant to lysine, methionine and proline analogues. Canad. J. Bot. 54, 1523–1529 (1976)Google Scholar
  28. Zenk, M.H., El-Shagi, H., Schulte, V.: Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med. 1975 Suppl., 79–101 (1975)Google Scholar
  29. Zucker, M.: Light and enzymes. Ann. Rev. Plant Physiol. 23, 133–156 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • A. Razzaque
    • 1
  • B. E. Ellis
    • 1
  1. 1.Guelph-Waterloo Centre for Graduate Work in ChemistryUniversity of GuelphGuelphCanada

Personalised recommendations