Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Control by light of hypocotyl growth in de-etiolated mustard seedlings

I. Phytochrome as the only photoreceptor pigment


After sowing, mustard (Sinapis alba L.) seedlings were grown for 48 h in white light (25°C). These fully de-etiolated, green seedlings were used as experimental material between 48 and 72 (84) h after sowing. The question researched was to what extent control by light of hypocotyl elongation is due to phytochrome in these seedlings. It was found that the light effect on hypocotyl growth is very probably exerted through phytochrome only. In particular, we found no indication for the involvement of a specific blue light photoreceptor pigment.

This is a preview of subscription content, log in to check access.



high irradiance reaction

Pfr :

far-red absorbing, physiologically active form of phytochrome

Pr :

red absorbing, physiologically inactive form of phytochrome

Pot :

total phytochrome, i.e. [Pr]+[Pfr]




red light


far-red light


white light


blue light


dichromatic irradiation


hypocotyl length


  1. Black, M., Shuttleworth, J.E.: The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117, 57–66 (1974)

  2. Campbell, R.C.: Statistische Methoden für Biologie und Medizin. Stuttgart: Thieme 1971

  3. Downs, R.J.: Photoreversibility of leaf and hypocotyl elongation of dark grown red kidney bean seedlings. Plant Physiol. 30, 468–473 (1955)

  4. Downs, R.J., Hendricks, S.B., Borthwick, H.A.: Photoreversible control of elongation of pinto beans and other plants under normal conditions of growth. Bot. Gaz. 118, 199–208 (1957)

  5. Drumm, H., Wildermann, A., Mohr, H.: The “high-irradianceresponse” in anthocyanin formation as related to the phytochrome level. Photochem. Photobiol. 21, 269–273 (1975)

  6. Elliot, W.M., Miller, J.H.: Light-controlled stem elongation in pea seedlings grown under varied light conditions. Plant physiol. 53, 279–283 (1974)

  7. Hanke, J., Hartmann, K.M., Mohr, H.: Die Wirkung von “Störlicht” auf die Blütenbildung von Sinapis alba L. Planta 86, 235–249 (1969)

  8. Hartmann, K.M.: A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366 (1966)

  9. Hartmann, K.M.: Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch. 22c, 1172–1175 (1967a)

  10. Hartmann, K.M.: Photoreceptor problems in photomorphogenic responses under high-energy-conditions (UV-blue-far-red). In: Book of Abstracts, Europ. Photobiology Symp, Hvar (Yugoslavia), pp. 29–31 (1967b)

  11. Hoagland, D., Arnon, D.J.: The water-culture methods of growing plants without soil. Calif. Exp. Sta. Circ. No. 347 (Ch 2) (1938)

  12. Jose, A.M.: Photoreception and photoresponses in the radish hypocotyl. Planta 136, 125–129 (1977)

  13. Jose, A.M., Vince-Prue, D.: Action spectra for the inhibition of growth in radish hypocotyls. Planta 136, 131–134 (1977)

  14. Meijer, G.: The spectral dependence of flowering and elongation. Acta Bot. Neerl. 8, 189–246 (1959)

  15. Mohr, H.: Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L., Planta 49, 389–405 (1957)

  16. Mohr, H.: Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83 (1966)

  17. Mohr, H.: Lectures on Photomorphogenesis. Berlin-Heidelberg-New York: Springer 1972

  18. Proctor, J.T.A.: Developmental changes in radish caused by brief end-of-day exposures to far-red radiation. Can. J. Bot. 51, 1075–1077 (1973)

  19. Schäfer, E.: a new approach to explain the “high irradiance response” of photomorphogenesis on the basis of phytochrome. J. Math. Biol. 2, 41–56 (1975)

  20. Schäfer, E., Lassig, T.-U., Schopfer, P.: Photocontrol of phytochrome destruction in grass seedlings. The influence of wavelength and irradiance. Photochem. Photobiol. 22, 193–202 (1975)

  21. Schäfer, E.: Kunstlicht und Pflanzenzucht. In: Optische Strahlungsquellen, pp. 249–266, Albrecht, H., ed. Grafenan: Lexika 1977

  22. Schopfer, P., Oelze-Karow, H.: Nachweis einer Schwellenwertsregulation durch Phytochrom bei der Photomodulation des Hypokotylstreckungswachstums von Senfkeimligen (Sinapis alba L.). Planta 100, 167–180 (1971)

  23. Spruit, C.J.P.: Estimation of phytochrome by spectrophotometry in vivo: instrucmentation and interpretation. In: Phytochrome, pp. 77–104. Mitrakos, K., Shropshire, W., eds., New York: Academic Press 1972

  24. Thomson, B.F., Miller, P.M.: Growth patterns of pea seedlings in darkness and in red and white light. Am. J. Bot. 48, 256–261 (1961)

  25. Turner, M.R., Vince, D.: Photosensory mechanisms in the lettuce seedling hypocotyl. Planta 84, 368–382 (1969)

  26. Vince-Prue, D.: Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida. Planta 133, 149–156 (1977)

  27. Wildermann, A.: Die Bedeutung des Phytochroms für die Regulation des Hypokotyllängenwachstums bei grünen Keimlingen von Sinapis alba L. Doct. dissertation, University of Freiburg, W-Germany (1977)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wildermann, A., Drumm, H., Schäfer, E. et al. Control by light of hypocotyl growth in de-etiolated mustard seedlings. Planta 141, 211–216 (1978).

Download citation

Key words

  • Hypocotyl growth
  • Photomorphogenesis
  • Phytochrome
  • Sinapis