Archives of Orthopaedic and Trauma Surgery

, Volume 116, Issue 8, pp 480–483 | Cite as

Application of extracorporeal shock-waves in the treatment of pseudarthrosis of the lower extremity

Preliminary results
  • J. Vogel
  • C. Hopf
  • P. Eysel
  • J.-D. Rompe
Original Article

Abstract

Between January 1991 and January 1996, pseudarthroses of the legs were treated prospectively in 48 patients by application of high-energy extracorporeal shock waves with an experimental device. The mean duration of pseudarthrosis was 12 months. On average, 2.4 surgical interventions had previously been performed. A total of 3000 impulses with an energy density of 0.6 mJ/mm2 was applied to the pseudarthrosis. Bony union was achieved in 60.4% of our patients after an average of 3.4 months. Failures were found especially in the atrophic types of pseudarthrosis as well as in congenital bone disorders like fibrous dysplasia or osteogenesis imperfecta. No serious complications were observed. Even after numerous surgical interventions high-energy extracorporeal shock-wave therapy showed a fair success rate. A higher success rate of this non-invasive method for the treatment of bony non-unions may be expected by applying strict selection criteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augat P (1993) Project-report: EinfluB von Stoßwellen auf die Knochenheilung. University of UlmGoogle Scholar
  2. 2.
    Besch L, Bielstein D, Schuckart M, Zenker W (1994) Analyse von 55 posttraumatischen Pseudarthrosen nach Unterschenkelfraktur. Zentralbl Chir 119: 702–705PubMedGoogle Scholar
  3. 3.
    Bhan S, Mehara AK (1993) Percutaneous bone grafting for nonunion and delayed union of fractures of the tibial shaft. Int Orthop 17:310–312PubMedGoogle Scholar
  4. 4.
    Cattaneo R, Catagni MA, Guerreschi F (1993) Applications of the Ilizarov method in the humerus. Hand Clin 9:729–739PubMedGoogle Scholar
  5. 5.
    Ekkernkamp A, Bosse A, Haupt G, Pomme A (1992) Der Einfluß der extrakorporalen StoBwellen auf die standardisierte Tibiafraktur am Schaf. In: Ittel TH, Sieberth H-G, Matthiaß HH (eds) Aktuelle Aspekte der Osteologie. Springer, Berlin Heidelberg New York, pp 307–310Google Scholar
  6. 6.
    Forriol F, Solchaga L, Moreno JL, Canadell J (1994) The effect of shockwaves on mature and healing of cortical bone. Int Orthop 18:325–329PubMedGoogle Scholar
  7. 7.
    Fukada E, Yasuda I 81957) On the piezoelectric effect of bone. J Phys Soc Jpn 12:1158–1162Google Scholar
  8. 8.
    Graff J (1989) Die Wirkung hochenergetischer Stoßwellen auf Knochen und Weichteilgewebe. Thesis, Ruhr Universität BochumGoogle Scholar
  9. 9.
    Graff J, Richter K-D, Pastor J (1988) Effect of high energy shock waves on bony tissue. Urol Res 16:252–258Google Scholar
  10. 10.
    Haist J (1995) Die Osteorestauration via StoBwellenanwendung. Eine neue Möglichkeit zur Therapie der gestörten knöchernen Konsolidierung. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D (eds) Die Stoßwelle. Forschung und Klinik. Attempto, Tübingen, pp 157–161Google Scholar
  11. 11.
    Haist J, Steeger D, Witzsch U, Bürger RA, Haist U (1992) The extracorporal shockwave therapy in the treatment of disturbed bone union. 7th International Conference on Biomedical Engineering, Singapore, pp 222–224Google Scholar
  12. 12.
    Haupt G, Katzmeier P (1995) Anwendung der hochenergetischen extrakorporalen Stoßwellentherapie bei Pseudarthrosen, Tendinosis calcarea der Schulter und Ansatztendinosen (Fersensporn, Epicondylitis). In: Chaussy C, Eisenberger F, Jocham D, Wilbert D (eds) Die Stoßwelle. Forschung und Klinik. Attempto, Tübingen, pp 143–146Google Scholar
  13. 13.
    Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M (1992) Influence of shock waves on fracture healing. Urology 39:529–532CrossRefPubMedGoogle Scholar
  14. 14.
    Johannes EJ, Kaulesar Sukul DM, Matura E (1994) High-energy shock waves for the treatment of nonunions: an experiment on dogs. J Surg Res 57:246–252CrossRefPubMedGoogle Scholar
  15. 15.
    Kaulesar Sukul DM, Johannes EJ, Pierik E, Eijck G van, Kristelijn M (1992) The effect of high energy shock waves focused on cortical bone: an in vitro study. J Surg Res 53:46–51Google Scholar
  16. 16.
    Loew M, Jurgowski W, Mau HC, Thomsen M (1995) Treatment of calcifying tendinitis of rotator cuff by extracorporeal shock waves: a preliminary report. J Shoulder Elbow Surg 4:101–106PubMedGoogle Scholar
  17. 17.
    Perren SM (1993) Aktivierung der Knochenhedung durch StoBwellentherapie in der Frakturbehandlung. AO Forschungsinstitut, DavosGoogle Scholar
  18. 18.
    Rijnberg WJ, Linge B van (1993) Central grafting for persistent nonunion of the tibia. A lateral approach to the tibia, creating a central compartment. J Bone Joint Surg [Br] 75:926–931Google Scholar
  19. 19.
    Rompe J-D, Rumler F, Hopf C, Nafe B, Heine J (1995) Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop 321:196–201PubMedGoogle Scholar
  20. 20.
    Rompe J-D, Hopf C, Nafe B, Burger R (1996) Low-energy extracorporal shock wave therapy for painful heel: a prospective controlled single-blind study. Arch Orthop Trauma Surg 115:75–79PubMedGoogle Scholar
  21. 21.
    Rompe J-D, Hopf C, Küllmer K, Heine J, Burger R (1996) Analgesic effect of extracorporeal shock-wave therapy on chronic tennis elbow. J Bone Joint Surg [Br] 78:233–237Google Scholar
  22. 22.
    Rosson JW, Simonis RB (1992) Locked nailing for nonunion of the tibia. J Bone Joint Surg [Br] 74:358–361Google Scholar
  23. 23.
    Russo S, Brigand F, Gigliotti S, De Durante C, Peluso GF, Corrado EM (1995) Treatment of scaphoid non union by lithotripsy. 6th Congress of the International Federation of Societies for Surgery of the Hand (IFSSH), Helsinki, Finland, 3–7 JulyGoogle Scholar
  24. 24.
    Schleberger R (1995) Anwendung der extrakorporalen Stoßwelle am Stütz- und Bewegungsapparat im mittelenergetischen Bereich. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D (eds) Die Stoßwelle. Forschung und Klinik. Attempto, Tübingen, pp 166–174Google Scholar
  25. 25.
    Schleberger R, Senge T (1992) Non-invasive treatment of long-bone pseudarthrosis by shock waves (ESWL). Arch Orthop Trauma Surg 111:224–227PubMedGoogle Scholar
  26. 26.
    Seemann O, Rassweiler J, Chvapil M, Alken P, Drach GW (1992) Effect of low dose shock wave energy on fracture healing: an experimental study. J Endurol 6:219–223Google Scholar
  27. 27.
    Simon JP, Stuyck J, Hoogmartens M, Fabry G (1992) Posterolateral bone grafting for nonunion of the tibia. Acta Orthop Belg 58:308–313PubMedGoogle Scholar
  28. 28.
    Valchanou VD, Michailov P (1991) High energy shock waves in the treatment of delayed and non union of fractures. Int Orthop 15:181–184PubMedGoogle Scholar
  29. 29.
    Warren SB, Brooker AF Jr (1992) Intramedullary nailing of tibial nonunions. Clin Orthop 285:236–243PubMedGoogle Scholar
  30. 30.
    Wirth CJ (1992) Pseudarthrosen. In: Jäger M, Wirth CJ (eds) Praxis der Orthopädie, 2nd edn. Thieme, StuttgartGoogle Scholar
  31. 31.
    Wiss DA, Stetson WB (1994) Nonunion of the tibia treated with a reamed intramedullary nail. J Orthop Trauma 8:189–194PubMedGoogle Scholar
  32. 32.
    Wu CC, Shih CH (1992) Treatment of 84 cases of femoral union. Acta Orthop Scand 63:57–60PubMedGoogle Scholar
  33. 33.
    Yeaman LD, Jerome CP, McCullough DL (1989) Effects of shock waves on the structure and growth of the immature rat epiphysis. J Urol 141:670–674PubMedGoogle Scholar
  34. 34.
    Younger EM, Chapmann MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • J. Vogel
    • 1
  • C. Hopf
    • 1
  • P. Eysel
    • 1
  • J.-D. Rompe
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity Hospital MainzMainzGermany

Personalised recommendations