Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Protein- und RNS-Gehalt des Hypokotyls beim stationären Wachstum im Dunkeln und unter dem Einfluß von Phytochrom (Keimlinge von Sinapis alba L.)

Protein and RNA contents of the hypocotyl during steady state growth lengthening in the dark and under the influence of phytochrome (seedlings of sinapis alba L.)

  • 13 Accesses

  • 4 Citations


Inhibition of hypocotyl lengthening by phytochrome can be regarded as a prototype of a “negative” photoresponse. The hypothesis has been advanced (Schopfer, 1967) that negative photoresponses are the consequence of a differential gene repression which is exerted by P730, the active phytochrome. This hypothesis is mainly based on experiments with specific inhibitors of RNA- and protein synthesis. —The present paper is part of an experimental program which has been designed to check this hypothesis.—Continuous irradiation with standard far-red has been used to establish a virtually stationary concentration of P730 over the whole period of experimentation (36–60 hours after sowing). To correlate more strictly the growth response of the hypocotyl with “molecular” changes in this organ the axis system without cotyledons has been used (Fig. 1). Even under these conditions the growth rate of the hypocotyl is nearly constant in light (continuous far-red) and dark during the whole period of experimentation (36–60 hours after sowing) (Fig. 2, 3). It is known from earlier experiments that cell division in the hypocotyl are very rare during this period and that there is virtually no increase in the DNA contents of the organ during the period of our experimentation (Weidner, 1967). Obviously the number of cells per hypocotyl is virtually constant between 36 and 60 hours after sowing. Organ (i.e. hypocotyl) lengthening is nearly exclusively due to cellular lengthening.—If we follow the protein contents of the hypocotyl we find (Fig. 4) that the total protein of the organ decreases steadily in spite of the fact that the organ grows at a constant rate. There is no significant difference in protein contents between dark-grown and far-red grown systems although the growth rates differ by a factor of 4 (Fig. 2, 3).—The situation is some-what different with respect to total RNA (Fig. 5). The RNA contents eventually decrease in far-red as well as in dark-grown systems but the decrease is significantly faster in the far-red treated systems than in the dark controls.—It is concluded that only a very small part of the total RNA and total protein of a cell can be related to the control of cellular growth. Changes in bulk RNA and bulk protein obviously do not necessarily reflect changes in the growth rate or growth capacity of an organ or a cell.


Das Wachstum des Hypokotyls wurde an Restkeimlingen ohne Kotyledonen (Abb. 1) untersucht. Die Wachstumsgeschwindigkeit ist in dem von uns untersuchten Zeitraum sowohl im Dunkeln als auch unter dem Einfluß von P730 (Dauer-Dunkelrot) praktisch konstant. Obgleich sich die Wachstumsgeschwindigkeiten im Dunkeln und im Dauer-Dunkelrot um den Faktor 4 unterscheiden, hat das Dunkelrot keinen signifikanten Einfluß auf den Gesamt-Proteingehalt des Hypokotyls (bzw. der durchschnittlichen Hypokotylzelle). Der Proteingehalt nimmt im Dunkeln und im Licht kontinuierlich ab. Auch der Gesamt-RNS-Gehalt zeigt innerhalb des Versuchszeitraums eine Abnahme, die unter dem Einfluß von Dunkelrot früher einsetzt als im Dunkeln. — Man kann aus den Daten der vorliegenden Arbeit schließen, daß nur ein kleiner Teil des Gesamt-Proteins und der Gesamt-RNS einer Zelle mit dem Zellwachstum unmittelbar in Verbindung gebracht werden kann.

This is a preview of subscription content, log in to check access.


  1. Bopp, M.: Hemmung des Streckenwachstums etiolierter Sproßachsen durch FUDR. Z. Pflanzenphysiol. 57, 173–187 (1967).

  2. Broughton, W. J., and A. J.McComb: The relation between cell-wall and protein synthesis in dwarf pea plants treated with gibberellic acid. Ann. of Bot. N.S. 31, 359–369 (1967).

  3. Clarkson, D. T., and W. S. Hillman: Stability of phytochrome concentration in dicotyledonous tissues under continuous far-red light. Planta (Berl.) 75, 286–290 (1967).

  4. Coartney, J. S., D. J. Morré, and J. L. Key: Inhibition of RNA synthesis and auxin-induced cell wall extensibility and growth by actinomycin D. Plant Physiol. 42, 434–439 (1967).

  5. Geiser, N.: Die Wirkung von Hellrot und Ultraviolett auf das Wachstum der Hypokotylzellen bei Sinapis alba L. Zulassungsarbeit Freiburg i.Br. (1964).

  6. Häcker, M., K. M. Hartmann u. H. Mohr: Zellteilung und Zellwachstum im Hypokotyl von Lactuca sativa L. unter dem Einfluß des Lichtes. Planta (Berl.) 63, 253–268 (1964).

  7. Hartmann, K. M.: A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366 (1966).

  8. Jakobs, M.: Der Einfluß von Phytochrom auf den Proteinstoffwechsel und auf die Translokation stickstoffhaltiger Verbindungen im Senfkeimling (Sinapis alba L.). Diss. Universität Freiburg i.Br. (1966).

  9. —: Kinetische Studien zur phytochrominduzierten Proteinsynthese. Planta (Berl.) 69, 187–197 (1966).

  10. Key, J. L.: Ribonucleic acid and protein synthesis as essential processes for cell elongation. Plant Physiol. 39, 365–370 (1964).

  11. —: Requirement for the synthesis of DNA-like RNA for growth of excised plant tissue. Proc. nat. Acad. Sci. (Wash.) 52, 1382–1388 (1964).

  12. Lockhart, J. A.: The analysis of interactions of physical and chemical factors on plant growth. Ann. Rev. Plant Physiol. 16, 37–52 (1965).

  13. Mohr, H.: Untersuchungen zur phytochrominduzierten Photomorphogenese des Senfkeimlings (Sinapis alba L.). Z. Pflanzenphysiol. 54, 63–83 (1966).

  14. —: Der Phototropismus und das lichtabhängige Längenwachstum des Hypokotyls von Sinapis alba L. Planta (Berl.) 55, 637–646 (1960).

  15. Morré, D. J.: Changes in tissue deformability accompanying actinomycin D inhibition of plant growth and ribonucleic acid synthesis. Plant Physiol. 40, 615–619 (1965).

  16. Noodén, L. D., and K. V. Thimann: Evidence for a requirement for protein synthesis for auxin-induced cell enlargement. Proc. nat. Acad. Sci. (Wash.) 50, 194–200 (1963).

  17. — Inhibition of protein synthesis and of auxin-induced growth by chloramphenicol. Plant Physiol. 40, 193–201 (1965).

  18. —: Action of inhibitors of RNA and protein synthesis on cell enlargement. Plant Physiol. 41, 157–164 (1966).

  19. Rai, V. K., and M. M. Laloraya: Correlative studies on plant growth and metabolism. I. Changes in protein and soluble nitrogen accompanying gibberellin induced growth in lettuce seedlings. Plant Physiol. 40, 437–441 (1965).

  20. — Correlative studies on plant growth and metabolism. II. Effect of light and of gibberellic acid on the changes in protein and soluble nitrogen in lettuce seedlings. Plant Physiol. 42, 440–444 (1967).

  21. Schopfer, P.: Der Einfluß von Actinomycin D und Puromycin auf die phytochrominduzierte Wachstumshemmung des Hypokotyls beim Senfkeimling (Sinapis alba L.). Planta (Berl.) 72, 306–320 (1967).

  22. Wagner, E., u. H. Mohr: “Primäre” und “sekundäre” Differenzierung im Zusammenhang mit der Photomorphogenese von Keimpflanzen (Sinapis alba L.). Planta (Berl.) 71, 204–221 (1966).

  23. Weidner, M.: Der DNS-Gehalt von Kotyledonen und Hypokotyl des Senfkeimlings (Sinapis alba L.) bei der phytochromgesteuerten Photomorphogenese. Planta (Berl.) 75, 94–98 (1967).

  24. —: Zur Regulation der RNS-Synthese durch Phytochrom bei der Photomorphogenese des Senfkeimlings (Sinapis alba L.). Planta (Berl.) 75, 99–108 (1967).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohr, H., Holderied, C., Link, W. et al. Protein- und RNS-Gehalt des Hypokotyls beim stationären Wachstum im Dunkeln und unter dem Einfluß von Phytochrom (Keimlinge von Sinapis alba L.). Planta 76, 348–358 (1967). https://doi.org/10.1007/BF00387540

Download citation