, Volume 151, Issue 6, pp 555–560 | Cite as

Quantitative ion localization within Suaeda maritima leaf mesophyll cells

  • Diana M. R. Harvey
  • J. L. Hall
  • T. J. Flowers
  • B. Kent


Grown under saline conditions, Suaeda maritima accumulates Na+ and Cl- into its leaves, where individual mesophyll cells behave differently in their compartmentation of these ions. Measurements of ion concentrations within selected subcellular compartments show that freeze-substitution with dry sectioning is a valuable preparative technique for analytical electron microscopy of highly vacuolate plant material. Using this approach, absolute estimates were made of Na+, K+ and Cl- concentrations in the cytoplasm, cell walls, chloroplasts and vacuoles of leaf mesophyll cells.

Key words

Halophyte Ion accumulation Suaeda 



transmission analytical electron microscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crafts, A.S., Currier, H.B., Stocking, C.R. (1949) Water in the physiology of plants, pp 73–110.Chronica Botanica Co. MassGoogle Scholar
  2. Eshel, A., Waisel, Y. (1979) Distribution of sodium and chloride in leaves of Suaeda monoica. Physiol. Plant. 46, 151–154Google Scholar
  3. Evans, H.J., Sorger, G.J. (1966) Role of mineral elements with emphasis on the univalent cations. Annu. Rev. Plant Physiol. 17, 47–76Google Scholar
  4. Flowers, T.J. (1972) Salt tolerance in Suaeda maritima (L.) Dum. The effects of sodium chloride on growth, respiration and soluble enzymes in a comparative study with Pisum sativum L. J. Exp. Bot. 23, 310–321Google Scholar
  5. Flowers, T.J., Troke, P.F., Yeo, A.R. (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89–121Google Scholar
  6. Flowers, T.J., Hall, J.L. (1978) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: the influence of the salinity of the culture solution on the content of various organic compounds. Ann. Bot. 42, 1057–1063Google Scholar
  7. Hall, J.L., Harvey, D.M.R., Flowers, T.J. (1978) Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima. Planta 140, 59–62Google Scholar
  8. Hall, T.A. (1972) X-ray microanalysis in biology: quantitation. Micron 3, 93–97Google Scholar
  9. Harvey, D.M.R., Flowers, T.J. (1978) Determination of the sodium, potassium and chloride ion concentrations in the chloroplasts of the halophyte Suaeda maritima by non-aqueous cell fractionation. Protoplasma 97, 337–349Google Scholar
  10. Harvey, D.M.R., Kent, B. (1981) Sodium localization in Suaeda maritima leaf cells using zinc uranyl acetate precipitation. J. Microsc. 121, 179–183Google Scholar
  11. Harvey, D.M.R., Flowers, T.J., Hall, J.L. (1976a) Localization of chloride in leaf cells of the halophyte Suadea maritima by silver precipitation. New Phytol. 77, 319–323Google Scholar
  12. Harvey, D.M.R., Flowers, T.J., Hall, J.L. (1979) Precipitation procedures for sodium, potassium and chloride localization in leaf cells of the halophyte Suaeda maritima. J. Microsc. 116, 213–226Google Scholar
  13. Harvey, D.M.R., Flowers, T.J., Hall, J.L., Spurr, A.R. (1980a) The preparation of calibration standards for sodium, potassium and chlorine analyses by analytical electron microscopy. J. Microsc. 118, 143–152Google Scholar
  14. Harvey, D.M.R., Hall, J.L., Flowers, T.J. (1976b) The use of freeze substitution in the preparation of plant tissue for ion localization studies. J. Microsc. 107, 189–198Google Scholar
  15. Harvey, D.M.R., Hall, J.L., Flowers, T.J. (1980b) Ion localization in freeze-substituted halophyte leaf tissue. In: Plant membrane transport: current conceptual issues, pp 493–494, Spanswick, R.M., Lucas, W.J., Dainty, J., eds. Elsevier/North Holland Biomedical, AmsterdamGoogle Scholar
  16. Kramer, D., Läuchli, A., Yeo, A.R. (1977) Transfer cells in roots of Phaseolus coocineus:ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot. 41, 1031–1040Google Scholar
  17. Larkum, A.W.D., Hill, A.E. (1970) Ion and water transport in Limonium V. The ionic status of chloroplasts in the leaf of Limonium vulgare in relation to the activity of the salt glands. Biochim. Biophys. Acta 203, 133–138Google Scholar
  18. Marschner, H. (1972) Why can sodium replace potassium in plants? In: Potassium in biochemistry and physiology, pp. 50–63, International Potash Institute.Google Scholar
  19. Ramati, A., Eshel, A., Liphschitz, N., Waisel, Y.. (1973) Localization of ions in cells of Potamogeton lucens L. Experientia 29, 497–501Google Scholar
  20. Russ, J.C. (1974) The direct element ratio model for quantitative analysis of thin sections. In: Microprobe analysis as applied to cells and tissues pp 269–276, Hall, T.A., Echlin, P., Kaufmann, R., eds. Academic Press, London New YorkGoogle Scholar
  21. Stelzer, R., Läuchli, A. (1978) Salt- and flooding tolerance of Puccinellia peisonis III. Distribution and localization of ions in the plant. Z. Pflanzenphysiol. 88, 437–448Google Scholar
  22. Walker, N.A., Pitman, M.G. (1976) Measurement of fluxes across membranes. In: Encyclopedia of plant physiology, 2, Transport in Plants II, pt. A, pp. 93–126, Lüttge, U., Pitman, M.G., eds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Yeo, A.R. (1974) Salt tolerance in the halophyteSuaeda maritima (L.) Dum. D. Phil. thesis, University of SussexGoogle Scholar
  24. Yeo, A.R., Läuchli, A., Kramer, D. (1977) Ion measurements by X-ray microanalysis in unfixed, frozen, hydrated plants cells of species differing in salt tolerance. Planta 134, 35–38Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Diana M. R. Harvey
    • 1
  • J. L. Hall
    • 1
  • T. J. Flowers
    • 1
  • B. Kent
    • 2
  1. 1.School of Biological SciencesUniversity of SussexBrightonUK
  2. 2.National Physical LaboratoryTeddingtonUK

Personalised recommendations