, Volume 144, Issue 2, pp 189–192 | Cite as

Genetic control of chalcone isomerase activity in anthers of Petunia hybrida

  • G. Forkmann
  • B. Kuhn


The gene Po in pollen of Petunia hybrida Vilm. controls a discrete step in flavonoid biosynthesis. In recessive genotypes, naringenin-chalcone (4, 2′,4′,6′-tetrahydroxychalcone) is accumulated, whereas, under the influence of the wild-type allele flavonols and anthocyanins are formed. Enzymic investigations on anthers of four genetically defined lines with different pollen colouration revealed a clear correlation between accumulation of naringenin-chalcone and deficiency of chalcone isomerase (EC The results allow the conclusion that chalcone is the first product of the flavanone synthase reaction in anthers of Petunia hybrida and that chalcone isomerase is essential for the formation of flavonols and anthocyanins. These results were similar to those previously obtained with Callistephus chinensis (L.) Nees.

Key words

Anthers Chalcone isomerase Flavonoid biosynthesis Genetic block Naringenin-chalcone Petunia 



ethylen glycol monomethyl ether




chalcone isomerase


acetic acid


thinlayer chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boland, M.J., Wong, E.: Purification and kinetic properties of chalcone-flavanone-isomerase from Soya bean. Eur. J. Biochem. 50, 383–389 (1975)PubMedGoogle Scholar
  2. Grambow, H.J., Grisebach, H.: Further studies on biosynthesis of flavonoids in Datisca cannabina. Phytochemistry 10, 789 (1971)CrossRefGoogle Scholar
  3. Grisebach, H.: Enzymologie der Flavonoidbiosynthese. Ber. dtsch. Bot. Ges. 88, 61–69 (1975)Google Scholar
  4. Hahlbrock, K., Wong, E., Schill, L., Grisebach, H.: Comparison of chalcone-flavanone isomerase heteroenzymes and isoenzymes. Phytochemistry 9, 949–958 (1970)CrossRefGoogle Scholar
  5. Hahlbrock, K., Grisebach, H.: Biosynthesis of flavonoids. In: The flavonoids Harborne, J.B., Mabry, T.J., Mabry, H., ed., p. 866–915. London: Chapman and Hall 1975Google Scholar
  6. Kreuzaler, F., Hahlbrock, K.: Enzymic synthesis of an aromatic ring from acetate units. Eur. J. Biochem. 56, 205–213 (1975)PubMedGoogle Scholar
  7. Kuhn, B., Forkmann, G., Seyffert, W.: Genetic control of chalcone-flavanone isomerase activity in Callisthephus chinensis. Planta 138, 199–203 (1978)Google Scholar
  8. Moustafa, E., Wong, E.: Purification and properties of chalcone-flavanone isomerase from Soya bean seed. Phytochemistry 6, 625–632 (1967)CrossRefGoogle Scholar
  9. Quast, L., Wiermann, R.: Über das Vorkommen verschieden substituierter Chalkone während der Mikrosporogenese. Experienta 29, 1165 (1973)Google Scholar
  10. de Vlaming, P., Kho, F.F.K.: 4,2′,4′,6′-Tetrahydroxychalcone in pollen of Petunia hybrida. Phytochemistry 15, 348–349 (1976)CrossRefGoogle Scholar
  11. Wiering, H.: Genetics of flower colour in Petunia hybrida hort. Gen. Phaenen 17, 117–134 (1974)Google Scholar
  12. Wiermann, R.: Aktivität der Chalkon-Flavanon Isomerase und Akkumulation von phenylpropanoiden Verbindungen in Antheren. Planta 102, 55–60 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • G. Forkmann
    • 1
  • B. Kuhn
    • 1
  1. 1.Institut für Biologie IILehrstuhl für Genetik der UniversitätTübingenFederal Republic of Germary

Personalised recommendations