Biological Cybernetics

, Volume 45, Issue 1, pp 71–77 | Cite as

Drosophila mutants disturbed in visual orientation

II. Mutants affected in movement and position computation
  • Heinrich Bülthoff
Article

Abstract

With the Y-maze selection technique described in Part I 2 strains of probably central nervous system (CNS) mutants have been isolated. These mutants show defects in the computation of both position and movement. One of these mutants (nofEB12) shows strong avoidance of small patterns moving with high velocity. This inversion of the object-induced orientation response can be mainly attributed to a modification of responses to fast progressive (front-to-back) movement. It is thus possible that overall optomotor behaviour may be decomposed into a set of genetically independent modules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybern. 24, 85–101 (1976)Google Scholar
  2. Bülthoff, H., Götz, K.G., Herre, M.: Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster (in preparation)Google Scholar
  3. Götz, K.G.: Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964)Google Scholar
  4. Götz, K.G.: Hirnforschung am Navigationssystem der Fliegen. Naturwissenschaften 62, 468–475 (1975)Google Scholar
  5. Götz, K.G.: Visual guidance in Drosophila. In: Development and neurobiology of Drosophila, pp. 391–407. Siddiqi, O., Babu, P., Hall, L.M., hall, J.C. (eds.). New York, London, Washington, Boston: Plenum Press 1980Google Scholar
  6. Götz, K.G., Buchner, E.: Evidence for one-way movement detection in the visual system of Drosophila. Biol. Cybern. 31, 243–248 (1978)Google Scholar
  7. Geiger, G.: Optomotor responses of the fly Musca domestica to transient stimuli of edges and stripes. Kybernetik 16, 37–43 (1974)Google Scholar
  8. Geiger, G.: Is there a motion-independent position computation of an object in the visual system of the housefly? Biol. Cybern. 40, 71–75 (1981)Google Scholar
  9. Geiger, G., Poggio, T.: The orientation of flies towards visual patterns: On the search for the underlying functional interactions. Biol. Cybern. 19, 39–54 (1975)Google Scholar
  10. Heisenberg, M.: Behavioral diagnostics; a way to analyze visual mutants of Drosophila. In: Information processing in the visual system of arthropods, pp. 265–268. Wehner, R. (ed.). Berlin, Heidelberg, New York: Springer 1972Google Scholar
  11. Heisenberg, M., Götz, K.G.: The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. Comp. Physiol. 98, 217–241 (1975)Google Scholar
  12. Heisenberg, M., Wolf, R.: On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. J. Comp. Physiol. 130, 113–130 (1979)Google Scholar
  13. Pick, B.: Visual flicker induces orientation behaviour in the fly Musca. Z. Naturforsch. 29c, 310–312 (1974)Google Scholar
  14. Pick, B.: Visual pattern discrimination as an element of the fly's orientation behaviour. Biol. Cybern. 23, 171–180 (1976)Google Scholar
  15. Poggio, T., Reichardt, W.: A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185–203 (1973)Google Scholar
  16. Poggio, T., Reichardt, W.: Visual fixation and tracking by flies: mathematical properties of simple control systems. Biol. Cybern. 40, 101–112 (1981)Google Scholar
  17. Reichardt, W.: Musterinduzierte Flugorientierung. Verhaltens-Versuche an der Fliege Musca domestica. Naturwissenschaften 60, 122–138 (1973)Google Scholar
  18. Reichardt, W., Poggio, T.: Visual control of orientation behavior in the fly. Part I. A quantitative analysis. Q. Rev. Biophys. 9, 311–375 (1976)Google Scholar
  19. Wehrhahn, C., Hausen, K.: How is tracking and fixation accomplished in the nervous system of the fly? Biol. Cybern. 38, 179–186 (1980)Google Scholar
  20. Wolf, R., Heisenberg, M.: On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. II. A temporally and spatially variable weighting function for the visual field (“visual attention”). J. Comp. Physiol. 140, 69–80 (1980)Google Scholar
  21. Zimmermann, G.: Der Einfluß stehender und bewegter Musteranteile auf die optomotorische Reaktion der Fliege Drosophila. Dissertation Eberhard-Karls-Universität Tübingen (1973)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Heinrich Bülthoff
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFederal Republic of Germany

Personalised recommendations