Marine Biology

, Volume 49, Issue 2, pp 177–185 | Cite as

Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges

  • C. R. Wilkinson


Symbiotic cyanobacteria are associated with marine sponges in three ways: the majority are free-living in the mesohyl; large aggregates occur in “cyanocytes” (specialized, vacuolated archeocytes); and few are present in digestive vacuoles. The cyanobacteria in Jaspis stellifera and Neofibularia irata are morphologically similar to those described in Mediterranean sponges, whereas those in Pericharax heteroraphis are different. The freeliving bacterial populations are morphologically similar, although the number of bacteria varies between the species. The fourth sponge Ircinia wistarii contains a mixed bacterial population unlike those in the other sponges. Sponge digestion of microbial associates is rare and not considered to contribute significant nutrients.


Sponge Coral Reef Bacterial Population Large Aggregate Marine Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Feldmann, J.: Sur quelques cyanophycées vivant dans le tissu des éponges de Banyuls. Archs Zool. exp. gén. 75, 381–404 (1933)Google Scholar
  2. Hildemann, W.H., R.L. Raison, G. Cheung, C.J. Hull, L. Akaka and J. Okamoto: Immunological specificity and memory in a scleractinian coral. Nature, Lond. 270, 219–223 (1977)Google Scholar
  3. Lévi, C. et A. Porte: Etude au microscopie électronique de l'éponge Oscarella lobularis Schmidd et se larve amphiblastula. Cah. Biol. mar. 3, 307–315 (1962)Google Scholar
  4. Reiswig, H.M.: Particle feeding in natural populations of three marine demosponges. Biol. Bull. mar. biol. Lab., Woods Hole 141, 568–591 (1971)Google Scholar
  5. Sarà, M.: Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar. Biol. 11, 214–221 (1971)Google Scholar
  6. Smith, D.C., L. Muscatine and D.H. Lewis: Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol. Rev. 44, 17–90 (1969)Google Scholar
  7. Vacelet, J.: Description de cellules a bactéries intranucléaires chez des éponges Verongia. J. Microscopie 9, 333–346 (1970)Google Scholar
  8. —: Etude en microscopie électronique de l'association entre une cyanophycée chroococcale et une éponge du genre Verongia. J. Miscroscopie 12, 363–380 (1971)Google Scholar
  9. — Etude en microscopie électronique de l'association entre bactéries et spongiaires du genre Verongia (Dictyoceratida). J. Microscopie Biol. cell. 23, 271–288 (1975)Google Scholar
  10. Wiebe, W.J. and G.B. Chapman: Fine structure of selected marine pseudomonads and achromobacters. J. Bact. 95, 1862–1873 (1968)Google Scholar
  11. Wilkinson, C.R.: Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar. Biol. 49, 161–167 (1978a)Google Scholar
  12. — Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar. Biol. 49, 169–176 (1978b)Google Scholar
  13. Wolk, C.P.: Physiology and cytological chemistry of blue-green algae. Bact. Rev. 37, 32–101 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • C. R. Wilkinson
    • 1
    • 2
  1. 1.Laboratoire Histologie et Biologie TissulaireUniversité Claude BernardVilleurbanneFrance
  2. 2.Department of BotanyUniversity of BristolBristolEngland

Personalised recommendations