Marine Biology

, Volume 49, Issue 2, pp 147–159 | Cite as

Siliceous sponge spicules in coral reef sediments

  • K. Rützler
  • I. G. Macintyre


Experimental etching with hydrofluoric acid indicated that silica deposition occurs in a recognizable pattern in common sponge microscleres. The postdepositional alteration of these spicules has previously been generally unrecognized or misinterpreted in the literature. Early stages of postdepositional etching of sponge spicules were observed in the acid insoluble fraction of sediments from the West Atlantic barrier reef near Carrie Bow Cay, Belize. Preliminary data on silica distribution in the Belize barrier reef show that concentrations in fine sediment (<0.25 mm) increase landward of the main reef tract. Sponge spicules are the main component of particulate silica in sediments of the reef and fore-reef where sponge populations abound, whereas grains prevail in the back-reef lagoon deposits. Recycling of locally dissolved silica appears to be important for the growth of many off-shore reef sponges.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arrhenius, G.: Pelagic sediments. In: The sea. Vol. 3. The earth beneath the sea history, pp 655–727. Ed. by M.N. Hill. New York and London: Wiley-Interscience 1963Google Scholar
  2. Brien, P.: Les démosponges, morphologie et reproduction. Traité Zool. 3, 133–461 (1973)Google Scholar
  3. Dayton, P.K., G.A. Robilliard, R.T. Paine and L.B. Dayton: Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974)Google Scholar
  4. Dendy, A.: The tetraxonid sponge spicule, a study in evolution. Acta zool., Stock. 2, 95–152 (1921a)Google Scholar
  5. —: Report on the Sigmatotetraxonida collected by H.M.S. “Sealark” in the Indian Ocean. Trans. Linn. Soc. Lond. (Ser. 2. Zool.) 18, 1–164 (1921b)Google Scholar
  6. Duncan, P.M.: On some remarkable enlargements of the axial canals of sponge spicules and their causes. Jl R. microsc. Soc. (Ser. 2) 1, 557–572 (1881)Google Scholar
  7. Elvin, D.: Growth rates of the siliceous spicules of the freshwater sponge Ephydatia muelleri (Lieberkühn). Trans. Am. microsc. Soc. 90, 219–224 (1971)Google Scholar
  8. Fanning, K.A. and M.E.Q. Pilson: The diffusion of dissolved silica out of deep-sea sediments. J. geophys. Res. 79, 1293–1297 (1974)Google Scholar
  9. Friedman, G.M., S.A. Ali and D.H. Krimsley: Dissolution of quartz accompanying carbonate precipitation and cementation in reefs: example from the Red Sea. J. sedim. Petrol. 46, 970–973 (1976)Google Scholar
  10. Garrone, R.: Collagéne, spongine et squelette minéral chez l'éponge Haliclona rosea (O.S.) (Démosponge, Haploscléride). J. Microscopie 8, 581–598 (1969)Google Scholar
  11. Gray, J.E.: On Placospongia, a new generic form of Spongiadae in the British Museum. Proc. zool. Soc. Lond. 1867, 127–219 (1867)Google Scholar
  12. Hartman, W.D. and T.F. Goreau: Jamaican coralline sponges: their morphology, ecology and fossil relatives. In: The biology of the Porifera, pp 205–243. Ed. by W.G. Fry. London: Academic Press 1970Google Scholar
  13. Hinde, G.J.: On a new genus of siliceous sponges from the lower calcareous grit of Yorkshire. Q. Jl geol. Soc. Lond. 46, 54–61 (1890)Google Scholar
  14. Huang, T.: A new Radiolaria from the Sōmachi Formation, Kikai-jima, Kagoshima Prefecture, Japan. Trans. Proc. palaeont. Soc. Japan (N.S.) 68, 177–184 (1967)Google Scholar
  15. Hurd, D.C.: Factors affecting solution rate of biogenic opal in seawater. Earth planet. Sci. Letters 15, 411–417 (1972)Google Scholar
  16. Inoue, M. and Y. Iwasaki: A problematic micro-organism similar to the sterraster of sponges. Proc. Japan Acad. 51, 273–278 (1975)Google Scholar
  17. Jewell, M.E.: An ecological study of the freshwater sponges of northern Wisconsin. Ecol. Monogr. 5, 461–504 (1935)Google Scholar
  18. Jørgensen, C.B.: On the spicule-formation of Spongilla lacustris (L.) I. The dependence of the spicule formation on the content of dissolved and solid silicic acid of the milieu. Biol. Meddr 19, 1–45 (1944)Google Scholar
  19. Koltun, V.M.: Spicules of sponges as an element of the bottom sediments of the Antarctic. In: Symposium on Antartic Oceanography, Santiago, Chile, 1966, pp 121–123. Cambridge: Scott Polar Research Institute 1968Google Scholar
  20. Land, L.S.: Early dissolution of sponge spicules from reef sediments, North Jamaica. J. sedim. Petrol. 46, 967–969 (1976)Google Scholar
  21. Macintyre, I.G.: Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. J. sedim. Petrol. 47, 503–516 (1977)Google Scholar
  22. Moore, C.H. and W.W. Shedd: Effective rates of sponge bioerosion as a function of carbonate production. Proc. 3rd int. Symp. coral Reefs 2, 500–505 (1977). Ed. by D.L. Taylor. Miami: School of Marine and Atmospheric Sciences, University of MiamiGoogle Scholar
  23. Neumann, A.C.: Observations on coastal erosion in Bermuda and measurement of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11, 92–108 (1966)Google Scholar
  24. Pé, J.: Étude quantitative de la régulation du squelette chez und éponge d'eau douce. Archs Biol., Bruxelles 84, 147–173 (1973)Google Scholar
  25. Reid, R.E.H.: Microscleres in demosponge classification. Paleont. Contr. Univ. Kans. 35, 1–37 (1968)Google Scholar
  26. Reif, W.-E.: Schwammspicula aus dem weißen Jura Zeta von Nattheim (Schwäbische Alb). Paleontographica (Abt. A) 127, 85–102 (1967)Google Scholar
  27. Reiswig, H.M.: The axial symmetry of sponge spicules and its phylogenetic significance. Cah. Biol. mar. 12, 505–514 (1971)Google Scholar
  28. —: Population dynamics of three Jamaican Demospongiae. Bull. mar. Sci. 23, 191–226 (1973)Google Scholar
  29. Riley, J.P. and R. Chester: Introduction to marine chemistry, 465 pp. London and New York: Academic Press 1971Google Scholar
  30. Rützler, K.: The role of burrowing sponges in bioerosion. Oecologia (Berl.) 19, 203–216 (1975)Google Scholar
  31. —: Sponges in coral reefs. In: Coral reefs: research methods, pp 299–313. Ed. by D.R. Stoddart and R.E. Johannes, Paris: UNESCO 1978Google Scholar
  32. Schindewolf, O.H.: Analyse eines Ammoniten-Gehäuses. Abh. math.-naturw. Kl. Akad. Wiss. Mainz 8, 135–188 (1967)Google Scholar
  33. Schrammen, A.: Die Kieselspongien des oberen Jura von Süddeutschland. A. Vorwort und allgemeiner Teil. Palaeontographica (Abt. A) 84, 149–194 (1936)Google Scholar
  34. Schwab, D.W. and R.E. Shore: Mechanism of internal stratification of siliceous sponge spicules. Nature, Lond. 232, 501–502 (1971)Google Scholar
  35. Sollas, W.J.: Report on the Tetractinellida collected by H.M.S. Challenger, during the years 1873–1876. Rep. scient. Results Voyage HMS Challenger (Zool.) 25, i-clxvi, 1–458 (1888)Google Scholar
  36. Strickland, J.D.H. and T.R. Parsons: A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167, 1–311 (1968)Google Scholar
  37. Vosmaer, G.C.J. and J.H. Vernhout: The Porifera of the Siboga Expedition. I. The genus Placospongia. Siboga Exped. 6A, 1–17 (1902)Google Scholar
  38. Weaver, C.E. and K.C. Beck: Miocene of the S.E. United States: a model for chemical sedimentation in a peri-marine environment. Sedimentary Geol. 17, 1–234 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. Rützler
    • 1
    • 2
  • I. G. Macintyre
    • 1
  1. 1.National Museum of Natural HistorySmithsonian InstitutionWashington, D.C.USA
  2. 2.Department of Invertebrate Zoology, NHB 163Smithsonian InstitutionWashington, D.C.USA

Personalised recommendations