Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Wirkungsspektren der Anthocyansynthese in Gewebekulturen und Keimlingen von Haplopappus gracilis

Action spectra of anthocyanin synthesis in tissue cultures and seedlings of Haplopappus gracilis


The biosynthesis of anthocyanin in tissue cultures and intact seedlings of Haplopappus gracilis is a light-dependent reaction which can be induced by blue light only. Anthocyanin appeared in all organs of the seedling.

Wounding of the plant led to an increase in the content of anthocyanin due to increased anthocyanin synthesis in the cotyledons.

The action spectra of anthocyanin formation in tissue cultures and intact seedlings have two peaks, one at 438 nm and the other at 372 nm. The limit of activity in the direction of longer wavelengths lies between 474 and 493 nm. Red light of short and long wavelength is ineffective in the induction of pigment synthesis. The photoreceptor of the light reaction is supposed to be a yellow pigment (flavoprotein or carotinoid). In contrast to the intact plants, isolated cotyledons and wounded seedlings are able to form anthocyanin not only in the blue region but also during irradiation with red light of high intensity. The action spectrum of anthocyanin synthesis in the isolated cotyledons has a marked maximum at about 440 nm and a second one at about 660 nm. A little activity can be observed throughout the visible spectrum. The pigment synthesis induced by red light can be completely suppressed by DCMU, an inhibitor of photosynthesis. This indicates that in the case of the activity in the red light caused by wounding chlorophyll serves as photoreceptor.

The anthocyanin synthesis in tissue cultures and seedlings could not be influenced by low energy radiation in the red or in the far red region, even after induction of anthocyanin synthesis by blue light of high intensity. Therefore it seems that the phytochrome system is not involved in anthocyanin synthesis in Haplopappus gracilis.

This is a preview of subscription content, log in to check access.


  1. Arnold, A.: Zitiert in Siegelman: Physiological studies on phenolic biosynthetis. Biochem. of Phen. Comp. Ed.: Harborne, p. 437–456 (1964).

  2. Downs, R. J., Siegelman, H. W.: Photocontrol of anthocyanin synthesis in milo seedlings. Plant Physiol. 38, 25–30 (1963).

  3. —: Photocontrol of antocyanin synthesis. J. Wash. Sci. 54, 112–120 (1964).

  4. —, Siegelmann, H. W., Butler, W. L., Hendricks, S. B.: Photoreceptive pigments for the anthocyanin synthesis in apple skin. Nature (Lond.) 205, 909–910 (1965).

  5. Hartmann, K. M.: Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa) Z. Naturforsch. 22b, 1172–1175 (1967).

  6. Heath, O., Vince, D.: Some non-photosynthetic effects of light on higher plants with special reference to wavelength. Symp. Soc. exp. Biol. 16, 110–137 (1962).

  7. Hendricks, S. B., Borthwick, H. A.: Photocontrol of plant development by simultaneous excitation of two interconvertible pigments. Proc. nat. Acad. Sci. (Wash.) 45, 344–349 (1959).

  8. —: Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. II. Theory and control of anthocyanin synthesis. Bot. Gaz. 120, 187–193 (1959).

  9. —: Control of plant growth by phytochrome, comparative effects of radiation, p. 22–43. New York: Wiley & Sons Inc. 1960.

  10. —: The photoreactions controlling photoperiodism and related responses. Comparative biochemistry of photoreactive systems. New York: Acad. Press 1960.

  11. Mohr, H.: Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. Planta (Berl.) 49, 389–405 (1957).

  12. —, Nes, W. van: Der Einfluß sichtbarer Strahlung auf die Flavonoidsynthese und Morphogenese der Buchweizenkeimlinge (Fagopyrum esculentum Moench). I. Die Synthese von Anthocyan. Z. Bot. 51, 1–16 (1963).

  13. —, Schoser, G.: Eine Interferenzfilter-Monochromatoranlage für photobiologische Zwecke. Planta (Berl.) 53, 1–17 (1959).

  14. Nitsch, C., Nitsch, J. P.: Effet de la lumière sur l'induction de la phénylalanin—desaminase dans les tissus de tubercule d'Heliantus tuberosus L. C. R. Acad. Sci. (Paris) 10, 1102–1105 (1966).

  15. Raschke, E.: Eine Anlage zur monochromatischen Bestrahlung biologischer Objekte, ausgerüstet mit Interferenzfiltern und einer elektronisch geregelten 2,5-kW-Xenonlampe. Planta (Berl.) 75, 55–72 (1967).

  16. Rau, W.: Untersuchungen über die lichtabhängige Carotinoidsynthese. I. Das Wirkungsspektrum von Fusarium aquaeductum. Planta (Berl.) 72, 14–28 (1967).

  17. Reinert, J. H., Clauss, H., Ardenne, R. v.: Anthocyanbildung von Happlopappus gracilis in Licht verschiedener Qualitäten. Naturwissenschaften 51, 87 (1964).

  18. Schoser, G.: Eine Anlage zur monochromatischer Strahlung für photobiologische Untersuchungen. Ber. dtsch. bot. Ges. 79, 271–278 (1966).

  19. Siegelman, H. W., Hendricks, S. B.: Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol. 32, 393–398 (1957).

  20. White, P. R.: The cultivation of animal and plant cells. New York: Roald Press (1943.)

  21. Withrow, R. B., Withrow, A. P.: Generation, control and measurement of visible and near-visible radiant energy. Radiat. Biol. 3, 125–258 (1956).

  22. Yuk Lin Ng, Thimann, K. V., Gordon, S. A.: The biogenesis of anthocyanin in Spirodela oligorhizza. Arch. Biochem. 107, 550–558 (1964).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lackmann, I. Wirkungsspektren der Anthocyansynthese in Gewebekulturen und Keimlingen von Haplopappus gracilis . Planta 98, 258–269 (1971). https://doi.org/10.1007/BF00387070

Download citation